Baldragon Academy Higher Maths Checklist

Contents:

Expressions and Functions

Logarithmic and Exponential Functions	2
Addition Formulae	5
Wave Function	7
Graphs of Functions	8
Sets of Functions	9
Vectors	11

Relationships and Calculus

Polynomials	14
Quadratic Functions	17
Trigonometry	
Further Calculus	20

Applications

The Straight Line	
Recurrence Relations	
Differentiation	
Integration	

Page

Expressions and Functions

Topic	Skills	Notes	
Logs and	Exponentials		
Exponential Functions	An exponential function is written in the form:		
	$y = a^x$		
	where a is the base, and x is the exponent		
	$y = a^{x}$		
The Logarithmic Function	The logarithmic function is the inverse of the exponential function. It is written as: $y = \log_a x$		
	where a is the base $\int \frac{a, 1}{y = \log_a x}$ Note: On your calculator the log button is $\log_{10} x$		
Convert Between Logarithmic	If $y = a^x$ then $x = \log_a y$ Example:		
and Exponential Form	$3 = \log_a 8$ $a^3 = 8$ $a = \sqrt[3]{8}$ a = 2		

The Exponential Function	The exponential function is written as $y = e^x$, where e is the base, which is approximately 2.718		
Natural Logarithms	The natural log function is the inverse of the exponential function $y = e^x$, it is written as		
	$y = \ln x$		
	which means $y = \log_e x$		
Laws of Logs	• $\log_a xy = \log_a x + \log_a y$		
	Example:		
	$\log_4 8 + \log_4 2 = \log_4(8 \times 2) = \log_4 16 = 2$		
	• $\log_a \frac{x}{y} = \log_a x - \log_a y$		
	Example:		
	$\log_4 8 - \log_4 2 = \log_4 \frac{8}{2} = \log_4 4 = 1$		
	• $\log_a x^n = n \log_a x$		
	Example:		
	$\frac{1}{3}\log_9 27 = \log_9 27^{\frac{1}{3}} = \log_9 3 = \frac{1}{2}$		
	• $\log_a a = 1$		
	Example:		
	$\log_5 5 = 1$		
Use the Laws of Logs to	Example:		
Solve Log	Solve: $\log_5(x+1) + \log_5(x-3) = 1$		
Equations	$\log_{5}(x+1)(x-3) = 1 (using \ 1st \ law)$ $(x+1)(x-3) = 5$ $x^{2} - 2x - 3 = 5$ $x^{2} - 2x - 8 = 0$ $(x+3)(x-4) = 0$		
	(x+2)(x-4) = 0 .: $x = -2, x = 4$		
	Example:		

			
	Find x if $4\log_x 6 - 2\log_x 4 = 1$		
	$\log_{x} 6^{4} - \log_{x} 4^{2} = 1$ $\log_{x} \frac{6^{4}}{4^{2}} = 1$ $\frac{6^{4}}{4^{2}} = x$ $x = \frac{2^{4} \times 3^{4}}{2^{4}}$		
	$\log_{10} \frac{6^4}{6^4} = 1$		
	64^{42}		
	$\frac{\partial}{A^2} = x$		
	$^{-24} \times 3^{4}$		
	$x = \frac{2^4}{2}$		
	$x = \overline{3^4}$ $x = 81$		
	x = 81		
Use Laws of	• For an initial value; substitute given		
Logs to Solve	values in to equation to determine the		
Exponential	initial value.		
Growth or	• For finding a half-life, make the		
Decay Problems	equation equal to one half		
Problems	Example:		
	Likumpie.		
	In the equation, where A represents		
	micrograms of a radioactive substance		
	remaining over time t. Find:		
	(a) The initial value if there are 500		
	microgram after 100 years.		
	(b) The half-life of the substance		
	(a) $A_t = A_0 e^{-0.004t}$		
	$500 = A_0 e^{-0.004 \times 100}$ $500 = 0.67A_0$		
	$A_0 = 746 \text{ micrograms}$		
	(b) $373 = 746e^{-0.004t}$		
	$\frac{1}{2} = e^{-0.004t}$		
	$\frac{1}{2} = e^{-0.004t}$ $\ln \frac{1}{2} = \ln e^{-0.004t}$		
	$-0.004t = \ln \frac{1}{2}$		
	t = 173 years		
	<i>i – 115 years</i>		
Formulae for	In experimental data questions, two types of		
Experimental	exponential functions are considered, $y = kx^n$		
Data	and $y = ab^x$		
	$y = kx^n$		
	$y = \kappa x$		
y	1	•	

		гг	1	
	Taking logs of both sides, this equation may			
	be expressed as $\log y = n \log x + \log k$. To find the unknown values n and k:			
	• If the data given is x and y data, then			
	take logs of two sets of the data for x			
	and y and form a new table with $\log x$			
	and $\log y$			
	 Substitute new values into log y = 			
	$n \log x + \log k$ and solve simultaneously			
	to find values for n and log k			
	• Find k by solving log k			
	• Write $y = kx^n$ with values of k and n			
	$y = ab^x$			
	Taking logs of both sides, this equation may			
	be expressed as $\log y = x \log b + \log a$. To find			
	the unknown values a and b:			
	• If the data given is x and y data, then			
	take logs of the data for y.			
	• Substitute values into $\log y = x \log b + y$			
	log <i>a</i> and solve simultaneously to find			
	values for $\log a$ and $\log b$			
	• Find a and b by solving log <i>a</i> and log <i>b</i>			
	• Write $y = ab^x$ with values of a and b			
Sketch the	See Graphs of Functions			
Graph of the Inverse				
Function of a				
Log or				
Exponential				
Function				
Addition	Formulae			
Use Exact	Example:			
Values to	^			
Calculate	Find the exact value of cos 225°			
Related				
Obtuse Angles	The related acute angle is 45° since $180^{\circ} + 45^{\circ}$			
	= 225°			
	From the graph or CAST diagram cos225 is			
	negative.			
	$\therefore \cos 225^\circ = -\cos 45^\circ = -\frac{1}{\sqrt{2}}$			
	Example:			

	2π		
	Find the exact value of $\sin \frac{2\pi}{3}$		
	The related acute angle is $\frac{\pi}{3}$ since $\pi - \frac{\pi}{3} = \frac{2\pi}{3}$		
	From the graph or CAST diagram $\sin \frac{2\pi}{3}$ is		
	positive.		
	$\therefore \sin\frac{2\pi}{3} = \sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$		
Use Addition Formulae to	$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$ $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$		
Expand Expressions	$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$ $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$		
	Note: For sin functions the signs are the same, for cos functions the signs are different		
Use Addition	Example:		
Formulae to Evaluate Exact Values of	Find the exact value of cos 75°		
Expressions	$\cos 75^{\circ} = \cos (45 + 30)^{\circ}$ = $\cos 45^{\circ} \cos 30^{\circ} - \sin 45^{\circ} \sin 30^{\circ}$ = $\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \times \frac{1}{2}$ = $\frac{\sqrt{3} - 1}{2\sqrt{2}}$		
	Example:		
	Given $\sin A = \frac{3}{5}$ and $\cos B = \frac{12}{13}$, show that $\sin(A + B) = \frac{56}{65}$		
	Use SOHCAHTOA to sketch triangles from the info given and use Pythagoras to find the unknowns.		
	$\begin{array}{c} 5 \\ A \\ 4 \end{array}$		
	Expand using Addition Formulae		
	$\sin(A+B) = \sin A \cos B + \cos A \sin B$		

	$= \frac{3}{5} \times \frac{12}{13} + \frac{4}{5} \times \frac{5}{13}$ $= \frac{56}{65}$		
Solve Trig Equations using Trig Identities	 Determine which part of the equation has a related identity Replace trigonometric term with related identity and solve 		
	Example:		
	Solve $\sin 2x = 2 \sin x \cos x$,		
	As $\sin 2x = 2 \sin x \cos x$, then $2 \sin x \cos x + \sin x = 0$, solve by factoring		
	Factorise: $\sin x (2\cos x + 1) = 0$		
	sin $x = 0$ Using Graph: $2\cos x + 1 = 0$ $\cos x = -\frac{1}{2}$		
	$x = 0^{\circ}, 180^{\circ}$ Using Cast:		
	$Q1 = 60^{\circ}$		
	Q2 = 180° - 60° = 120°		
Wave Fun	iction		
Write and Expression Form $k \sin(x \pm dx)$	$a \cos x + b \sin x$ can be written in one of the following forms:		
α) or $k \cos(x \pm \alpha)$	$k \sin(x + \alpha) k \sin(x - \alpha) k \cos(x + \alpha) k \cos(x - \alpha)$		
	Where $k = \sqrt{a^2 + b^2}$ and $\tan \alpha$ is derived from a and b		
	Example:		
	$k \sin(x + \alpha) = k(\sin x \cos \alpha + \cos x \sin \alpha)$ = $k \cos \alpha \sin x + k \sin \alpha \cos x$ = $\sqrt{3} \sin x + \cos x$		
	$\therefore k \cos \alpha = \sqrt{3}$ and $k \sin \alpha = 1$		

To find k: $k =$	$\sqrt{3+1} = 2$	
To find α : tan	$\alpha = \frac{k \sin \alpha}{k \cos \alpha}$	
	$= \frac{1}{\sqrt{3}}$ (use exact values) = 30°	
	d $k \cos \alpha$ are both positive, ngle is in Q1, less than 90°	
$\therefore \sqrt{3} \sin x + \cos x$	$x = 2 \sin(x + 30)^{\circ}$	
Example:		
Express $8 \cos x$ - where $k > 0$ and	- $6 \sin x$ in the form $k \cos(x + \alpha)^{\circ}$ d $0 \le x \le 360^{\circ}$	
= k	$(\cos x \cos \alpha - \sin x \sin \alpha)$ $\cos \alpha \cos x - k \sin \alpha \sin x$ $= 8 \cos x - 6 \sin x$	
$\therefore k \cos \alpha = 8 \qquad \text{a}$	and $k\sin\alpha = 6$	
To find k: $k =$	$\sqrt{8^2 + 6^2} = 10$	
To find α : tan α	$\alpha = \frac{k \sin \alpha}{k \cos \alpha}$	
tan α α	$= \frac{6}{8}$ $= 36.9^{\circ}$	
$\therefore 8\cos x - 6\sin x$	$x = 10\cos(x + 36.9)^{\circ}$	
Graphs of Function	IS	·

Sketch Related Graphs	Ensure all given coordinates are translated and marked on the new graph and axes and graphs are labelled		
	y = f(x) + a Graph moves up or down by a Up for $f(x) + a$ Down for $f(x) - a$		
	y = f(x + a) Graph moves left or right Left when $f(x + a)$ Right for $f(x - a)$		
	y = -f(x) Graph reflects in x-axis		
	y = f(-x) Graph reflects in y-axis		
	y = kf(x) Graph is stretched vertically for $k > 1$ Graph is squashed vertically for $0 < k < 1$		
	y = f(kx) Graph is squashed horizontally for $k > 1$ Graph is stretched horizontally for $0 < k < 1$		
Sketch Log and Exponential Graphs	Log Graphs of the form $y = \log_a x$ always cuts the x-axis at the point (1,0) and will pass through (a, 1)		

		[
	Exponential graphs of the form $y = a^x$ always cuts the y-axis at the point (0,1) and will pass through (1, a) All of the related graph transformations above apply to log and exponential graphs.		
Sketch the Graph of the Inverse Function of a Log or Exponential Function	The graph of an inverse function is reflected along the line y=x. the logarithmic graph is the inverse of the exponential graph and vice- versa. Example:		
	For the graph of the function $y = 2^x$ the inverse function is $y = \log_2 x$ $y = \frac{y}{(1, 2)} y = 2^x$ $y = \log_2 x$		
Sketch a Trig Graph of the Form $k \sin(x)$ $\pm \alpha$ or $k \cos(x)$ $\pm \alpha$	See Trigonometry – Sketch a Trig Graph from its Equation.		
Sets of Fu	inctions		
Find Composite Functions	Composite functions consist of one function within another.		
	If $f(x) = 3x - 2$ and $g(x) = x^2 - 4$, find		
	(a) $f(g(x))$ (b) $g(f(x))$		

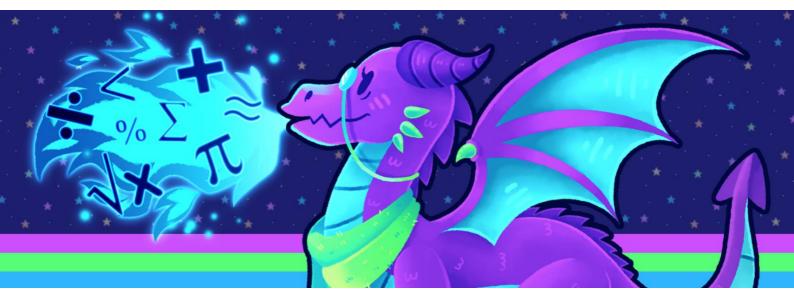
	(a) $f(g(x)) = 3(x^2 - 4) - 2 = 3x^2 - 14$ (b) $g(f(x)) = (3x - 2)^2 - 4 = 9x^2 - 12x$		
Evaluate Using Composite Functions	Example: Find H(-1) where $H(x) = g(f(x))$ and $f(x) = 3x - 2$, $g(x) = x^2 - 4$		
	Method 1:		
	$H(x) = g(f(x)) = \dots = 9x^2 - 12x$ $H(-1) = 9(-1)^2 - 12(-1) = 21$		
	Method 2:		
	f(-1) = 3(-1) - 2 = -5 g(-5) = (-5) ² - 4 = 21		
Determine a Suitable Domain of a Function	Restrictions on the domain of a function occur in 2 instances. A restriction will occur when a denominator is zero, which is undefined, or when a square root is negative, which is non-real.		
	Example:		
	For $f(x) = \frac{12x}{(4-x)^2}$ and $x \in \mathbb{R}$, write a restriction on the domain of $f(x)$		
	$x \neq 4$ as this would make the denominator zero		
State the Range of a	Example:		
Function	State the minimum turning point of the function $f(x) = x^2 + 5$ and hence state the range of the function		
	Minimum turning point is (0, 5) as the y- coordinate of the turning point is 5, the range of the function is $f(x) > 5$.		
Find an Inverse	For a function $f(x)$ there is an inverse function $f^{-1}(x)$, such that $f(f^{-1}(x)) = x$		
Function	To find an inverse function:		

	• Replace x with y in the function and		
	f(x) with xChange the subject to y		
	Example:		
	For the function $f(x) = \frac{3}{4-x^2}$ find the inverse function $f^{-1}(x)$		
	$f(x) = \frac{3}{4 - x^2}$ $x = \frac{3}{4 - y^2}$ $4 - y^2 = \frac{3}{x}$ $4 - \frac{3}{x} = y^2$ $y = \sqrt{4 - \frac{3}{x}}$		
	$\therefore f^{-1}(x) = \sqrt{4 - \frac{3}{x}}$		
Vectors			
Writing Vectors	Vectors can be written in component form i.e. $\boldsymbol{a} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$		
	or in terms of i , j , and k , where each of these represents the unit vector in the x, y, and z direction.		
	Example:		
	$\overrightarrow{AB} = 4\mathbf{i} - 3\mathbf{j} + 6\mathbf{k}$ can be written as $\overrightarrow{AB} = \begin{pmatrix} 4 \\ -3 \\ 6 \end{pmatrix}$		
Parallel Vectors	Vectors are parallel if one vector is a scalar multiple of the other		
	Example:		
	$\boldsymbol{a} = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} 4 \\ 4 \\ 16 \end{pmatrix} = 4 \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}$		
	$m{b} = 4m{a}$ \therefore vectors are parallel		

The Unit Vector	For any vector, there is a parallel vector u of magnitude 1. This is called the unit vector		
	Example:		
	Find the unit vector u parallel to vector a = $\begin{pmatrix} 5 \\ 12 \end{pmatrix}$		
	$ \mathbf{a} = \sqrt{5^2 + 12^2} = 13$		
	$\therefore \boldsymbol{u} = \frac{1}{13} \begin{pmatrix} 5\\12 \end{pmatrix} = \begin{pmatrix} \frac{5}{13}\\\frac{12}{13} \end{pmatrix}$		
Collinearity	Points are said to be collinear is they lie on the same line. To show points are collinear using vectors; show (a) they are parallel by demonstrating one vector is a scalar multiple of the other and (b) that they share a common point.		
	Example:		
	Show that A(-3, 4, 7), B(-1, 8, 3) and C(0, 10, 1) are collinear		
	$\overrightarrow{AB} = \mathbf{b} - \mathbf{a} = \begin{pmatrix} -1\\ 8\\ 3 \end{pmatrix} - \begin{pmatrix} -3\\ 4\\ 7 \end{pmatrix} = \begin{pmatrix} 2\\ 4\\ -4 \end{pmatrix} = 2 \begin{pmatrix} 1\\ 2\\ -2 \end{pmatrix}$ $\overrightarrow{BC} = \mathbf{c} - \mathbf{b} = \begin{pmatrix} 0\\ 10\\ 1 \end{pmatrix} - \begin{pmatrix} -1\\ 8\\ 2 \end{pmatrix} = \begin{pmatrix} 1\\ 2\\ -2 \end{pmatrix}$		
	$\overrightarrow{AB} = 2 \overrightarrow{BC}$ and point B is common $\therefore A, B, and C$ are collinear		
Divide Vectors into a Given	Example:		
Ratio to Find an Unknown Point	P is the point (6, 3, 9) and R is (12, 6, 0). Find the coordinates of Q, such that Q divides PR in the ratio 2:1		
	$\frac{\overrightarrow{PQ}}{\overrightarrow{QR}} = \frac{2}{1}$ $\overrightarrow{PQ} = 2 \overrightarrow{QR}$ $q - p = 2(r - q)$		
	q - p = 2r - 2q		

	$3\boldsymbol{q} = 2\boldsymbol{r} + \boldsymbol{p}$ $3\boldsymbol{q} = 2\begin{pmatrix}12\\6\\0\end{pmatrix} + \begin{pmatrix}6\\3\\9\end{pmatrix} = \begin{pmatrix}30\\15\\9\end{pmatrix}$		
	$\boldsymbol{q} = \begin{pmatrix} 0 \\ 10 \\ 5 \\ 3 \end{pmatrix} \therefore Q(10, 5, 3)$		
	Note: This could also be calculated using section formula		
Find the Ratio in Which a Point Divides a Line Segment	Example: A(-2, -1, 4), B(1, 5, 7) and C(7, 17, 13) are collinear. What is the ratio in which B divides AC? $\overrightarrow{AB} = \mathbf{b} - \mathbf{a} = \begin{pmatrix} 1 \\ 5 \\ 7 \end{pmatrix} - \begin{pmatrix} -2 \\ -1 \\ 4 \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \\ 3 \end{pmatrix}$ $\overrightarrow{BC} = \mathbf{c} - \mathbf{b} = \begin{pmatrix} 7 \\ 17 \\ 13 \end{pmatrix} - \begin{pmatrix} 1 \\ 5 \\ 7 \end{pmatrix} = \begin{pmatrix} 6 \\ 12 \\ 6 \end{pmatrix} = 2 \begin{pmatrix} 3 \\ 6 \\ 3 \end{pmatrix} = 2 \overrightarrow{AB}$		
	$2 \overrightarrow{AB} = \overrightarrow{BC}$ $\frac{\overrightarrow{AB}}{\overrightarrow{BC}} = \frac{1}{2}$ $\therefore \overrightarrow{AB} : \overrightarrow{BC}$ $1 : 2$		
Scalar Product	When given an angle between two vectors, the scalar product is calculated using $a. b = a b \cos\theta$		
	Note: To find the angle between the two other vectors θ , the vectors must be pointing away from each other and $0 \le \theta \le 180^{\circ}$ When given component form, i.e. if $a =$		
	$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$, the scalar product is calculated using $\boldsymbol{a} \cdot \boldsymbol{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$		
Angle Between Two Vectors	The angle between the two vectors is calculated by rearranging the scalar product formula		

[
	$\cos \theta = \frac{a.b}{ a b }$ which can be expanded to	
	$\cos\theta = \frac{a_1b_1 + a_2b_2 + a_3b_3}{ a b }$	
	Note: To find the angle between two vectors, the vectors must be pointing away from or towards each other. They must be going in the same direction	
	Example:	
	e.g. $a \\ b \\ b \\ b \\ b \\ c \\ c \\ c \\ c \\ c \\ c$	
Perpendicular Vectors	Vectors are perpendicular when a.b = 0	



Relationships and Calculus

Торіс	Skills	Notes		
Polynom	Polynomials			

Teeller	Iles conthatis division
Fully Factorise a	Use synthetic division
Polynomial	Example:
	Factorise $f(x) = x^3 - 3x + 2$
	Set up synthetic division using coefficients from polynomial.
	 If there is no term, use 0 The value outside the division is derived from factors of the last term (in this case factors of 2) If the remainder of the division is 0 then the value outside the division is a root
	-2 1 0 -3 2
	- ² - ⁴ - ²
	1 -2 1 0
	$\therefore (x + 2) is a factor and x = -2 is a root(x + 2)(x2 - 2x + 1) = 0(x + 2)(x - 1)(x - 1) = 0\therefore x = -1 (twice) and x = 2$
Remainder	Find the quotient and remainder of a function
Theorem	 Use synthetic division with the given value The value at the end is the remainder
	Example:
	Find the quotient and remainder when
	$f(x) = (x^3 - 3x + 9)$ is divided by $(x - 3)$
	3 1 0 -3 9
	3 - 9 - 18 1 3 6 27
	$\therefore f(x) = (x^3 + 3x + 6) \text{ and remainder } 27$

Identify the Equation of a Polynomial from a Graph	 Determine the factors from the roots on the graph Set up a polynomial with a coefficient of k outside the brackets Substitute the y-intercept or given point to determine the value of k 		
	Example: y = k(x+2)(x-1)(x-5)		
	When x = 0, y = 5 $5 = k(0+2)(0-1)(0-5)$ $5 = 10k$ $k = \frac{1}{2}$ $\therefore y = \frac{1}{2}(x+2)(x-1)(x-5)$		
Show that a Term is a Factor of a Polynomial	 From the factor, determine the root Use synthetic division with the given value If the remainder is 0 the term is a factor 		
Find Unknown Coefficients of a Polynomial	Substitute roots into equation and solve simultaneously Example: Find the values of p and q if $(x + 2)$ and $(x - 1)$ are factors of $f(x) = x^3 + 4x^2 + px + q$ $(x + 2)$ is a factor $\therefore x = -2$ is a root $(-2)^3 + 4(-2)^2 - 2p + q = 0$ 8 - 2p + q = 0 q = 2p - 8		
	$(x-1)$ is a factor $\therefore x = 1$ is a root		

Sketch the Graph of a Polynomial Function	$(1)^{3} + 4(1)^{2} + p + q = 0$ 5 + p + q = 0 q = -p - 5 Solve two equations simultaneously 2p - 8 = -p - 5 $ \div p = 1, q = -6 \text{ and } f(x) = x^{3} + 4x^{2} + x - 6$ • Find the x-intercepts (roots, when y=0) using synthetic division • Find the y-intercept (when x=0) • Find stationary points and their nature • Find out negative and positive x		
Ouadrati	c Functions		
Show a Line is a Tangent to a Quadratic Function	 Equate the line and quadratic Bring to one side Use the discriminant or factorise to show repeated root Example: Show that the line y = x + 5 is a tangent to the curve y = x² + 5x + 9 x² + 5x + 9 = x + 5 x² + 4x + 4 = 0 (x + 2)(x + 2) = 0 x = -2 twice ∴ line is a tangent to quadratic 		
Determine Nature of Intersection Between a Line and a Quadratic Function	 Equate line and quadratic Bring to one side Use the discriminant to determine nature of intersection 		
Determine Points of Intersection Between a Line and a Quadratic Function	 Equate line and quadratic Bring to one side Solve for x Substitute x values into line to find y values 		

Use Discriminant to Find	 Identify coefficients a, b, and c Use discriminant 		
Unknown Coefficients	Example:		
of a Quadratic	Find <i>p</i> given that $x^2 + x + p = 0$ has real roots		
Function	a = 1, b = 1, c = p		
	$ \begin{array}{l} b^2 - 4ac \ge 0 \\ 1^2 - 4(1)(p) \ge 0 \\ 1 - 4p \ge 0 \\ 1 \ge 4p \\ p \le \frac{1}{4} \end{array} $		
	Example:		
	Find <i>p</i> given that $4x^2 + 2px + 1 = 0$ has no real roots		
	a = 4, b = 2p, c = 1 $b^2 - 4ac < 0$		
	$\begin{array}{c c} 2p)^2 - 4(4)(1) < 0 \\ 4p^2 - 16 < 0 \\ 4(p^2 - 4) < 0 \\ 4(p+2)(p-2) < 0 \end{array} \qquad -2 \qquad 2 \end{array}$		
	Sketch graph		
	for no real roots -2		
Trigonor	netry		1
Convert from Degrees to Radians	Multiply degrees by π and divide by 180 then simplify Example:		
	Change 35° to radians		
	$\frac{35\pi}{180} = \frac{7\pi}{36}$		
Convert from Radians to Degrees	Multiply radians by 180 and divide by π then simplify		
0	Example:		
	Change $\frac{5\pi}{6}$ to degrees		

		- 1	
	$\frac{5\pi}{6} = \frac{5 \times 180\pi}{6\pi} = \frac{5 \times 30}{1} = 150^{\circ}$		
Solve Trig Equations With	Identify how many solutions from questionSolve the equation		
Multiple Solutions	Example:		
	Solve $2\cos 3x = 1$, for $0 \le x \le \pi$		
	$2\cos 3x = 1$ $\cos 3x = \frac{1}{2}$		
	$\cos 3x = \frac{7}{2}$ $3x = \frac{\pi}{3}, \pi - \frac{\pi}{3}, 2\pi + \frac{\pi}{3}$ $3x = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{7\pi}{3}$		
	$x = \frac{\frac{3}{7}}{\frac{2\pi}{9}}, \frac{\frac{3}{7\pi}}{\frac{9}{9}}, \frac{7\pi}{9}$		
Solving Trig Equations by Factorising	Factorise the equation in the same way as an algebraic equation, by looking for common factors, difference of two squares, or a trinomial		
	Example:		
	Solve $2 \sin x \cos x + \sin x = 0$, for $0 \le x \le 180^\circ$		
	Factorise: $\sin x (2 \cos x + 1) = 0$		
	$\sin x = 0 \qquad 2\cos x + 1 = 0 \qquad 1$		
	$x = 0^{\circ}, 180^{\circ}$ $\cos x = -\frac{1}{2}$		
	Q2: <i>x</i> =		
	$x = 0^{\circ}, 120^{\circ}, 180^{\circ}$		
Identify the Equation of a	Example:		
Trig Function from its	Determine the equation of the graph		
Graph	1. 5 2. $\frac{7\pi}{6}$ 3. $\frac{7\pi}{6}$		
	Ans: $y = 4 \sin 3x + 1$ Ans: $y = 2 \cos(x - \frac{\pi}{6})$		

Sketch a Trig	Example:
Graph from its Equation	Sketch the graph of $y = 2 \sin(x - 30)^\circ$ for $0 \le x \le 360$ showing clearly where the graph cuts the x-axis and the y-axis
	Amplitude of 2. Graph moves 30° to the right. Find x-intercepts when y = 0. Find y-intercept when x = 0. y -1 30^{0} 210^{0} 360^{0} x
Further	Calculus
Differentiate Trig Equations	$y = \sin x$ $y = \cos x$
Lquations	$\frac{dy}{dx} = \cos x \qquad \qquad \frac{dy}{dx} = -\sin x$
Integrate Trig Functions	$\int \sin x dx = -\cos x + C$
	$\int \cos x dx = \sin x + C$
Chain Rule	Used for differentiating composite functions
	 Differentiate the outer function Multiply by the derivative of the inner function
	If $h(x) = f(g(x))$ then $h'(x) = f'(g(x)) \times g'(x)$
	Example:
	Find $\frac{dy}{dx}$ when $y = \sqrt{2x-5}$
	Prepare function for differentiation
	$y = (2x - 5)^{\frac{1}{2}}$ $\frac{dy}{dx} = \frac{1}{2}(2x - 5)^{-\frac{1}{2}} \times 2$

	$\frac{dy}{dx} = \frac{1}{\sqrt{2x-5}}$		
	Example:		
	Find $\frac{dy}{dx}$ when $y = 3\cos^2 x$		
	Prepare function for differentiation		
	$y = 3(\cos x)^2$		
	$\frac{dy}{dx} = 6(\cos x)^1 \times \sin x$		
	$\frac{dy}{dx} = 6\cos x \sin x$		
Integration	When integrating composite functions		
of Composite Functions	 Integrate the outer function Divide by the derivative of the inner function 		
	$\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{(n+1) \times a} + C$		
	Example:		
	$\int (2x^3+5)^4 dx$		
	$\int (2x^3 + 5)^4 dx = \frac{(2x^3 + 5)^4}{5 \times 6x^2} + C = \frac{(2x^3 + 5)^4}{30x^2} + C$		
	Example:		
	$\int \sin(4x-3)dx$		
	$\int \sin(4x - 3)dx = \frac{-\cos(4x - 3)}{4} + C$		

Applications

Торіс	Skills	Notes	
Straight	Line		
Equation of a Perpendicular Bisector	 Find the midpoint of the line joining the 2 points Find gradient using 		
	 perpendicular gradients Substitute midpoint and inverted gradient into y - b = m(x - a) 		
Equation of a Median	 Find the midpoint of the line joining the 2 points Find gradient of the median 		

	Substitute into		
	y-b=m(x-a)		
Equation of an Altitude	 Find gradient of the altitude using perpendicular gradients Substitute into y - b = m(x - a) with point from vertex 		
Collinearity	 Show that 3 points are collinear Find gradients and point in common Statement: Points A, B, and C are collinear as m_{AB} = m_{BC} and point B is common to both 		
Circles			
Equation of Circle with Centre the Origin and Radius r	$x^2 + y^2 = r^2$		
Equation of a Circle with Centre (a,b) and Radius r	 Determine the centre and radius Substitute into equation (x - a)² + (y - b)² = r² 		
Centre and Radius of a Circle from its Equation	Use the equation $x^{2} + y^{2} + 2gx + 2fy + c = 0$ Centre: $(-g, -f)$ Radius: $r = \sqrt{g^{2} + f^{2} - c}$ Note: If $g^{2} + f^{2} - c < 0$ the equation is not a circle		
Equation of a Tangent to a Circle	 Determine the gradient of the radius from the centre and the point of contact of the tangent Find gradient using perpendicular gradients 		

Points of Intersection of a Line and a Circle	 Substitute perpendicular gradient and point into equation of a line y - b = m(x - a) Rearrange the line to y = mx + c then substitute into the equation of a circle Solve the quadratic to find x Substitute x value into y = mx + c to find y 		
Use Discriminant to Determine Whether a Line and Circle Intersect	 Rearrange the line to y = mx + c then substitute into the equation of a circle Simplify to quadratic form Use discriminant to determine intersection 		
Recurren	ce Relations		
Form Linear Recurrence Relations	Find values of a and b for relation $u_{n+1} = au_n + b$		
	Where a is the percentage multiplier and b is the increase		
Use Linear Recurrence Relations to Find Values	Start with u_0 (initial value) and substitute into relation		
Find the Limit of a Linear Recurrence Relation	 Determine values of a and b Ensure -1 < a < 1 Use limit formula L = b/(1-a) Interpret what the limit means in a specific context 		
Different	iation		
Differentiate a Function	To differentiate $f(x) = ax^n$, $f'(x) = anx^{n-1}$ For $f(x) = g(x) + h(x)$, $f'(x) = g'(x) + h'(x)$		
Find the Gradient or Rate of Change of a Function at a Given Point	 Know that f'(x) = m = rate of change Differentiate the function Substitute x-coordinate into derivative Example: Find the gradient of f(x) = 2x³ when x = 1 f'(x) = 6x² 		

Find the Equation of a Tangent to a Curve Find Stationary Points and Determine their Nature	 Differentiate function Find gradient from derivative Substitute point and gradient into equation of a line Find Stationary Points Differentiate function Set equal to 0 Solve to find x-coordinates of stationary points Substitute x-coordinates into original equation to find y-coordinates Determine Nature Draw nature table with x values slightly above and below the stationary points Sketch the nature from positive or negative values 	
	x $3^ 3$ 3^+ $f'(x)$ - 0 + slope _ _ /	
Sketch a Curve	 Find stationary points and nature Find roots by solving function (when y=0) Find y-intercept (when x=0) Find large positive and large negative x Sketch information on graph 	
Sketch the Derived Function	 Sketch function Extend stationary points to other coordinate axis Determine where the gradient is +ve and -ve 	

Closed	Find the maximum and minimum value in a		
Intervals	closed interval		
	• Find the stationary points and		
	determine their nature		
	 Find the y-coordinates at the extents of the interval 		
	 Examine to see where the maximum 		
	and minimum values are		
Increasing	Differentiate the function		
and	 Determine where gradient is positive or 		
Decreasing	negative from the derivative or a sketch		
Functions	of the derivative		
i uncciono			
	Note: A function is increasing where the		
	gradient m is positive and decreasing where		
	the gradient is negative		
Integratio	· · · · ·		
Integrate a	a n+1		
Function	$\int ax^n dx = \frac{ax^{n+1}}{n+1} + C$		
	$J \qquad n+1$		
Evaluate a	Example:		
Definite	Example.		
Integral	Evaluate $\int_{1}^{3} 4x dx$		
incegrui	Evaluate $\int_{1}^{1} 4x dx$		
	c ³		
	$\int_{1}^{3} 4x dx = (2(3)^2) - (2(1)^2) = 16$		
	J_1		
Area Between	• Find the area above the x-axis		
Curve and x-	 Find the area below the x-axis (ignore 		
axis	the negative)		
axis	 Add them together 		
	Example:		
	Limit Pro-		
	y f f f f f f f f f f		
	$\int_{0}^{1} f(x) dx$ $\int_{0}^{2} f(x) dx$		
	$1 2 \times c^2$		
	$\int f(x)dx$		

Area Between			
2 Curves			
	$y \uparrow y = g(x)$		
	• Set the curves equal to each other and		
	solve to find the limits		
	Set up the integral with		
	h		
	$\int_{a}^{b} [f(x) - g(x)] dx$		
	$\int_{a} \left[f(x) - g(x) \right] dx$		
Differential	Equations of the form $\frac{dy}{dx} = ax + b$ are called		
Equations			
Equations	differential equations. They are solved by		
	integration.		
	Example:		
	The curve $y = f(x)$ is such that $\frac{dy}{dx} = 9x^2$, the		
	dist.		
	curve passes through (1, 5). Express y in		
	terms of x.		
	$\int 0u^2 du = 2u^3 + C$		
	$y = \int 9x^2 dx = 3x^3 + C$		
	-		
	At (5, 1) $5 = 3(1)^3 + C$		
	5 = 3 + C		
	C = 2		
	$\therefore y = 3x^3 + 2$		
	$\cdots y = 3x + 2$		