Baldragon Academy

Higher Maths Checklist

Contents:
Expressions and Functions
Logarithmic and Exponential Functions 2
Addition Formulae 5
Wave Function 7
Graphs of Functions 8
Sets of Functions 9
Vectors 11
Relationships and Calculus
Polynomials 14
Quadratic Functions 17
Trigonometry 18
Further Calculus 20
Applications
The Straight Line 22
The Circle 22
Recurrence Relations 23
Differentiation 24
Integration 24

	Taking logs of both sides, this equation may be expressed as $\log y=n \log x+\log k$. To find the unknown values n and k : - If the data given is x and y data, then take logs of two sets of the data for x and y and form a new table with $\log x$ and $\log y$ - Substitute new values into $\log y=$ $n \log x+\log k$ and solve simultaneously to find values for n and $\log k$ - Find k by solving $\log k$ - Write $y=k x^{n}$ with values of k and n $y=a b^{x}$ Taking logs of both sides, this equation may be expressed as $\log y=x \log b+\log a$. To find the unknown values a and b : - If the data given is x and y data, then take logs of the data for y. - Substitute values into $\log y=x \log b+$ $\log a$ and solve simultaneously to find values for $\log a$ and $\log b$ - Find a and by bolving $\log a$ and $\log b$ - Write $y=a b^{x}$ with values of a and b			
Sketch the Graph of the Inverse Function of a Log or Exponential Function	See Graphs of Functions			
Additio	1ae			
Use Exact Values to Calculate Related Obtuse Angles	Example: Find the exact value of $\cos 225^{\circ}$ The related acute angle is 45° since $180^{\circ}+45^{\circ}$ $=225^{\circ}$ From the graph or CAST diagram cos225 is negative. $\therefore \cos 225^{\circ}=-\cos 45^{\circ}=-\frac{1}{\sqrt{2}}$			

Wave Function

Write and Form $k \sin (x \pm$ α) or $k \cos (x \pm$ $\alpha)$
$a \cos x+b \sin x$ can be written in one of the following forms:
$k \sin (x+\alpha)$
$k \sin (x-\alpha)$
$k \cos (x+\alpha)$
$k \cos (x-\alpha)$

Where $k=\sqrt{a^{2}+b^{2}}$ and $\tan \alpha$ is derived from a and b

Example:

$k \sin (x+\alpha)=k(\sin x \cos \alpha+\cos x \sin \alpha)$
$=k \cos \alpha \sin x+k \sin \alpha \cos x$
$=\sqrt{3} \sin x+\cos x$
$\therefore k \cos \alpha=\sqrt{3} \quad$ and $\quad k \sin \alpha=1$

Sets of Functions

Find
Composite Functions

Composite functions consist of one function within another.

Example:
If $f(x)=3 x-2$ and $g(x)=x^{2}-4$, find
(a) $\quad f(g(x))$
(b) $\quad g(f(x))$

| | | |
| :--- | :--- | :--- | :--- |
| | | |
| | | |

	- Replace x with y in the function and $f(x)$ with x - Change the subject to y Example: For the function $f(x)=\frac{3}{4-x^{2}}$ find the inverse function $f^{-1}(x)$ $\begin{aligned} f(x) & =\frac{3}{4-x^{2}} \\ x & =\frac{3-y^{2}}{4-} \\ 4-y^{2} & =\frac{3}{x} \\ 4-\frac{3}{x} & =y^{2} \\ y & =\sqrt{4-\frac{3}{x}} \\ \therefore f^{-1}(x) & =\sqrt{4-\frac{3}{x}} \end{aligned}$			
Vectors				
Writing Vectors	Vectors can be written in component form i.e. $\boldsymbol{a}=\left(\begin{array}{l} x \\ y \\ z \end{array}\right)$ or in terms of \mathbf{i}, \mathbf{j}, and \mathbf{k}, where each of these represents the unit vector in the x, y, and z direction. Example: $\overrightarrow{A B}=4 \boldsymbol{i}-3 \boldsymbol{j}+6 \boldsymbol{k}$ can be written as $\overrightarrow{A B}=\left(\begin{array}{c}4 \\ -3 \\ 6\end{array}\right)$			
Parallel Vectors	Vectors are parallel if one vector is a scalar multiple of the other Example: $a=\left(\begin{array}{l} 1 \\ 1 \\ 4 \end{array}\right) \text { and } \boldsymbol{b}=\left(\begin{array}{c} 4 \\ 4 \\ 16 \end{array}\right)=4\left(\begin{array}{l} 1 \\ 1 \\ 4 \end{array}\right)$ $\boldsymbol{b}=4 \boldsymbol{a} \therefore \text { vectors are parallel }$			

Relationships and Calculus

Topic Skills

	$\frac{d y}{d x}=\frac{1}{\sqrt{2 x-5}}$ Example: Find $\frac{d y}{d x}$ when $y=3 \cos ^{2} x$ Prepare function for differentiation $\begin{aligned} y & =3(\cos x)^{2} \\ \frac{d y}{d x} & =6(\cos x)^{1} \times \sin x \\ \frac{d y}{d x} & =6 \cos x \sin x \end{aligned}$
Integration of Composite Functions	When integrating composite functions - Integrate the outer function - Divide by the derivative of the inner function $\int(a x+b)^{n} d x=\frac{(a x+b)^{n+1}}{(n+1) \times a}+C$ Example: $\begin{gathered} \int\left(2 x^{3}+5\right)^{4} d x \\ \int\left(2 x^{3}+5\right)^{4} d x=\frac{\left(2 x^{3}+5\right)^{4}}{5 \times 6 x^{2}}+C=\frac{\left(2 x^{3}+5\right)^{4}}{30 x^{2}}+C \end{gathered}$ Example: $\begin{gathered} \int \sin (4 x-3) d x \\ \int \sin (4 x-3) d x=\frac{-\cos (4 x-3)}{4}+C \end{gathered}$

Applications

Topic Skills
 Straight Line

Equation of a
Perpendicular
Bisector

- Find the midpoint of the line joining the 2 points
- Find gradient using

perpendicular gradients
- Substitute midpoint and inverted gradient into $y-b=m(x-a)$

Equation of a Median

- Find the midpoint of the line joining the 2 points
- Find gradient of the median

			(1)

Circles

Equation of Circle with Centre the Origin and Radius r	$x^{2}+y^{2}=r^{2}$		
Equation of a Circle with Centre (a,b) and Radius r	- Determine the centre and radius - Substitute into equation $(x-a)^{2}+(y-b)^{2}=r^{2}$		
Centre and Radius of a Circle from its Equation	Use the equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ Centre: $(-g,-f)$ Radius: $r=\sqrt{g^{2}+f^{2}-c}$ Note: If $g^{2}+f^{2}-c<0$ the equation is not a circle		
Equation of a Tangent to a Circle	- Determine the gradient of the radius from the centre and the point of contact of the tangent - Find gradient using perpendicular gradients		

Recurrence Relations

Form Linear Recurrence Relations	Find values of a and b for relation $\quad u_{n+1}=a u_{n}+b$			
Where a is the percentage multiplier and b is the increase				
Use Linear Recurrence Relations to Find Values	Start with u_{o} (initial value) and substitute into relation			
Find the Limit of a Linear Recurrence Relation	- Determine values of a and b - Ensure $-1<a<1$ - Use limit formula $L=\frac{b}{1-a}$ specpret what the limit means in a			

Differentiation

| Area Between |
| :--- | :--- | :--- | :--- | :--- |
| 2 Curves |

