

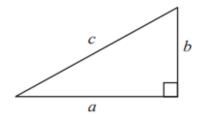
National 4

Relationships

Preparation Booklet

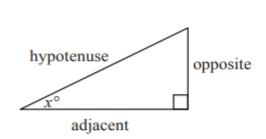
Formulae list

Circumference of a circle: $C = \pi d$


Area of a circle: $A = \pi r^2$

Curved surface area of a cylinder: $A = 2\pi rh$

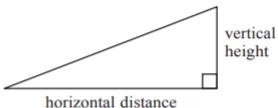
Volume of a cylinder: $V = \pi r^2 h$


Volume of a prism: V = Ah

Theorem of Pythagoras:

$$a^2 + b^2 = c^2$$

Trigonometric ratios in a right angled triangle:



$$tan x^{\circ} = \frac{opposite}{adjacent}$$

$$sin x^{\circ} = \frac{adjacent}{bypotenuse}$$

$$cos x^{\circ} = \frac{adjacent}{bypotenuse}$$

Gradient:

$$Gradient = \frac{\text{vertical height}}{\text{horizontal distance}}$$

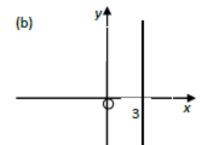
Exercise 1

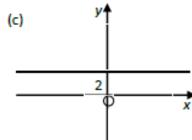
1. Copy and complete the table below for y = 3x. Plot the points and draw the straight line on an x - y axis.

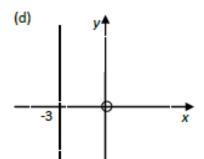
X	1	2	3
y			

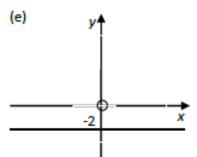
2. Copy and complete the table below for y = 2x + 1. Plot the points and draw the straight line on an x - y axis.

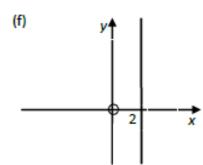
X	1	2	3
y			


3. Copy and complete the table below for y = 3x - 2. Plot the points and draw the straight line on an x - y axis.


X	1	2	3
y			


Exercise 2


Write down the equation of each line in the diagrams below.


(a) y 1

Exercise 3

Solve the following equations;

(a)
$$3y + 7 = -2$$
 (b) $2x + 5 = 9$ (c) $4z - 3 = 9$ (d) $6x - 8 = -2$

(b)
$$2x + 5 = 9$$

(c)
$$4z - 3 = 9$$

(d)
$$6x - 8 = -2$$

(e)
$$2y+5=-1$$
 (f) $8x+7=31$ (g) $5z-2=8$ (h) $3x-7=-1$

(f)
$$8x + 7 = 31$$

(g)
$$5z-2=8$$

(h)
$$3x-7=-1$$

Exercise 4

Change the subject of the formula to the given letter in the bracket

(a)
$$c = \frac{d}{x}$$
 (x) (b) $2t + 5 = y$ (c) $c = \frac{2}{p}$ (P) (d) $x = 4 + yz$

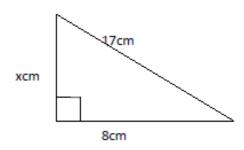
(b)
$$2t + 5 =$$

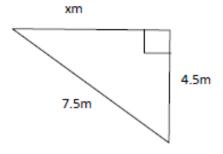
(c)
$$c = \frac{2}{P}$$

(d)
$$x = 4 + y_2$$

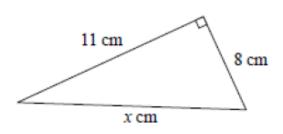
(e)
$$2x+5=k$$
 (x) (f) $\frac{R}{t}=x$ (t) (g) $5P-2=8q$ (P) (h) $a=1-6z$ (z)

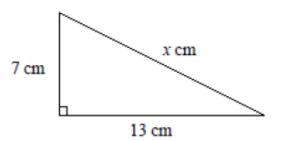
(f)
$$\frac{R}{t} = x$$
 (t)


(h)
$$a = 1 - 6z$$
 (

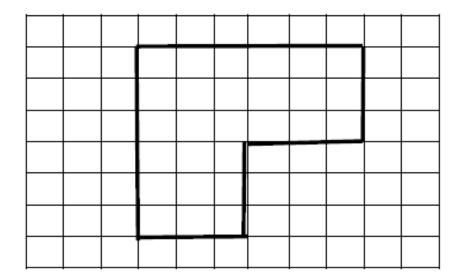

Exercise 5

Calculate the length x in these triangles

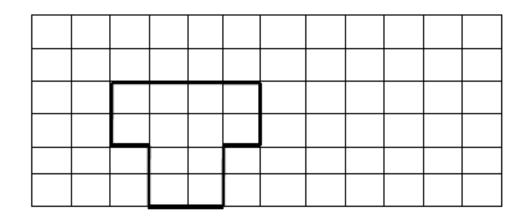

(a)



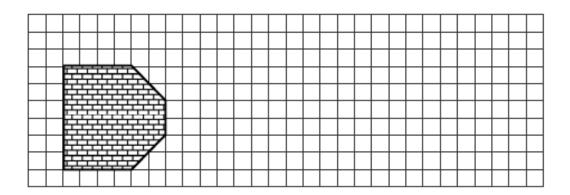
(c)



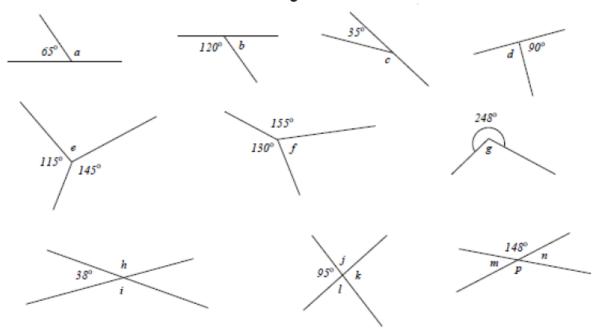
(d)



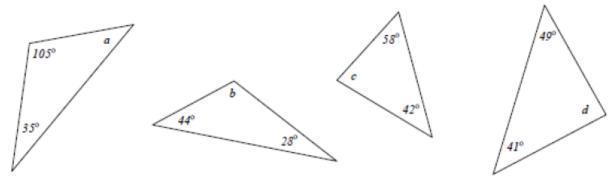
Exercise 6


- 1. On squared paper draw
- (i) a reduction of the given shape using a scale factor of $\frac{2}{3}$
- (ii) an enlargement of the given shape using a scale factor of 2

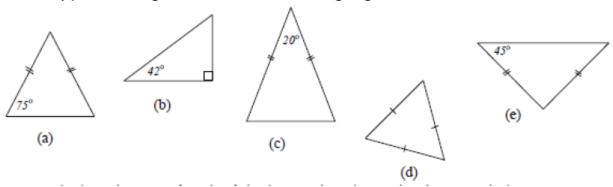
- 2. On squared paper draw
- (i) an enlargement of the given shape using a scale factor of $\frac{3}{2}$
- (ii) a reduction of the given shape using a scale factor of $\frac{1}{2}$

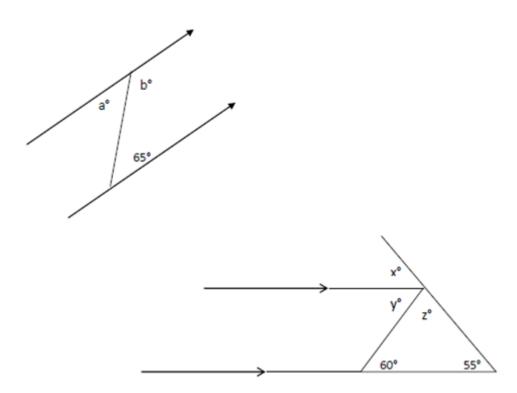


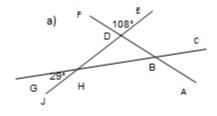
On squared paper draw an enlargement of this shape using a Scale Factor of 1.5.

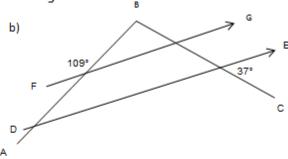


Exercise 7

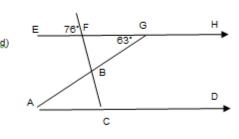

1. Calculate the size of each lettered angle below:


2. Calculate the size of each of the missing angles in the triangles below:

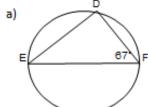

3. Copy each triangle and fill in all the missing angles

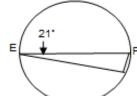


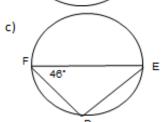
4. Calculate the missing angles a, b, x, y and z in the diagrams.



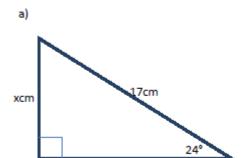
5. For each diagram find the value of the angle $\ensuremath{\mathsf{ABC}}$

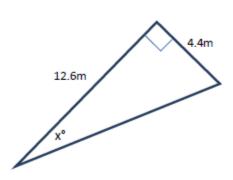



C) B 82'

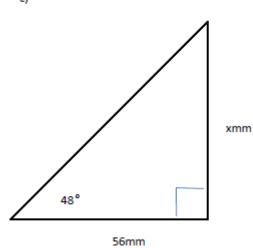


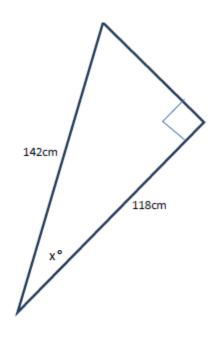
6. Find the size of the angle DEF in each of the following:



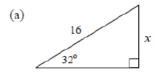


EXERCISE 8

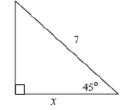

1. Find x in the following triangles.



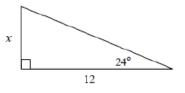
c)

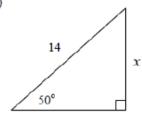


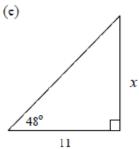
d)



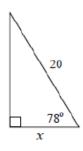
EXERCISE 9


1. Calculate the length of each side marked \boldsymbol{x} in each triangle below:

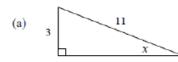

(b)



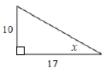
(c)



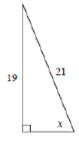
(d)



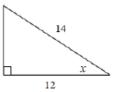
(f)



Calculate the angle marked $\mathbf{x}^{\mathbf{o}}$ in each triangle below 2.



(b)


(c)

(d)

(e)

(f)

EXERCISE 10

Plot each of the following sets of points on a separate coordinate diagram and draw a line of 1. best fit where possible

SET 1

	$\overline{}$
x	y
3	3
4	3
1	1
7	9
1 7 9	9 7 5
3	5
2	2
7	2
7 6	б
5	5
9	8
8	7
3 7	2
7	6

SET 2

x	у
3	7
4	6
10	4
11	5
7	5
12	3
13	3
2	6
9	5
5	5
8	4
11	4
10	3
6	7
11	3
1	8
3	1
14	2

SET 3

x	y
2	2
7	3
5	8
10	2
9	2 5
9	7
1	9
3	6
4	4
6	11
6	5
7	8