Baldragon Academy
 National 5 Maths Checklist

Contents:

Page

Expressions and Formulae

Rounding 2
Surds 2
Indices 3
Algebra 3
Algebraic Fractions 5
Volumes 6
Gradient 6
Circles 6
Relationships
The Straight Line 7
Solving Equations/ Inequations 8
Simultaneous Equations 8
Change the Subject 9
Quadratic Functions 10
Properties of Shapes 13
Similar Shapes 13
Trigonometry (Graphs and Equations) 13
Applications
Triangle Trigonometry 16
Vectors 17
Percentages 18
Fractions 19
Statistics 20

Expressions and Formulae

| Topic | Skills | Notes | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Rounding | | | |
| Round to
 Decimal places | Example:
 $25.1241=25.1$ to 1 d.p.
 Example:
 $34.676=34.68$ to 2 d.p. | | |
| Round to
 Significant
 Figures | Example:
 $1276=1300$ to 2 sig figs
 Example:
 $0.06356=0.064$ to 2 sig figs | | |

Surds

Indices

| | Example:
 $5 x^{2}-125$
 $=5\left(x^{2}-25\right)$
 $=5(x+5)(x-5)$ | | |
| :--- | :--- | :--- | :--- | :--- |

Algebraic Fractions

| Simplifying | Step 1: Factorise expressions
 Algebraic
 Fractions 2: Look for common factors.
 Step 3: Cancel and simplify
 Example:

 $\frac{6 x^{2}-12 x}{x^{2}+x-6}=\frac{6 x(x-2)}{(x+3)(x-2)}=\frac{6 x}{x+3}$ | | |
| :--- | :--- | :--- | :--- | :--- |
| Add and
 Subtract
 Fractions | Need common denominator | | |

Relationships

Topic Skills

Straight Line

Gradient

- Represented by m
- Measure of steepness of slope
- + gradient = line increasing

	- - gradient = line decreasing		
y - intercept	- Represented by c - Shows where the line cuts the y - axis - Find by setting $x=0$		
Gradient	The gradient is represented by the letter m Step 1: Select 2 coordinates Step 2: Label them ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) Step 3: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ Example: $(-4,4)$ and $(12,-28)$ $\begin{array}{llll}\mathrm{x}_{1} & \mathrm{y}_{1} & \mathrm{X}_{2} & \mathrm{y}_{2}\end{array}$ $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{(-28)-4}{12-(-4)}=\frac{-32}{16}=-2$		
Find equation of a line	Step 1: Find gradient m Step 2: Find y-intercept c Step 3: Substitute into $y=m x+c$		
Solving Equations/ Inequations			
Solving Equations	Use suitable method: Example: $\begin{aligned} 5(\mathrm{x}+4) & =2(\mathrm{x}-5) \\ 5 \mathrm{x}+20 & =2 \mathrm{x}-10 \\ 5 \mathrm{x} & =2 \mathrm{x}-30 \\ 3 \mathrm{x} & =-30 \\ \mathrm{x} & =-10 \end{aligned}$		
Solving Inequations	Solve the same way as equations. Note: When dividing by a negative change the sign Example: $\begin{array}{r} -3 x<15 \\ x>-5 \end{array}$		
Simultaneous Equations			

Change the Subject

| | | |
| :--- | :--- | :--- | :--- | :--- |

$$
\begin{aligned}
& a=1, b=5, \quad c=4 \\
& \begin{aligned}
b^{2}-4 a c & =5^{2}-4 \times 1 \times 4 \\
& =25-16 \\
& =9
\end{aligned}
\end{aligned}
$$

Since $b^{2}-4 a c>0$ means 2 real roots

Example:

Determine p, where $x^{2}+8 x+p$ has equal roots

$$
\begin{aligned}
b^{2}-4 a c & =0 \\
8^{2}-4 \times 1 \times p & =0 \\
64-4 p & =0 \\
-4 p & =-64 \\
p & =16
\end{aligned}
$$

Properties of Shapes

Similar Shapes

Linear Scale Factor	Linear Scale Factor $=\frac{\text { New Length }}{\text { Original Length }}$		
Area Scale Factor	Area Scale Factor $=\left(\frac{\text { New Length }}{\text { Original Length }}\right)^{2}$		
Volume Scale Factor	Volume Scale Factor $=\left(\frac{\text { New Length }}{\text { Original Length }}\right)^{3}$		

Trigonometry

Applications

Percentages

Fractions

Add and Subtract Fractions	Find a common denominator			
Kiss Kiss Smile				
Example:				
$\frac{2}{3}+\frac{4}{5}=\frac{10}{15}+\frac{12}{15}=\frac{22}{15}$				
Add and Subtract Mixed Fractions	Make improper fractions. Then add or subtract as normal.			
Example:				

Statistics

Mean	$\bar{x}=\frac{\sum n}{n}=\frac{\text { sum of data }}{\text { number of terms }}$			
Five-Figure Summary	$\begin{aligned} & \mathrm{l}=\text { lowest term } \\ & \mathrm{Q}_{1}=\text { lower quartile } \\ & \mathrm{Q}_{2}=\text { median } \\ & \mathrm{Q}_{3}=\text { upper quartile } \\ & \mathrm{h}=\text { highest term } \end{aligned}$			
Semi- Interquartile Range	$S I Q R=\frac{Q_{3}-Q_{1}}{2}$			
Standard Deviation	$S D=\sqrt{\frac{\sum(x-\bar{x})}{n-1}}$			
Comparing Data	Always compare the measure of average and the measure of spread.			

	Example:			
	On average, Stacey runs more because her mean running time is greater, but Steve is more consistent as his standard deviation is smaller.			
Line of Best Fit	Use knowledge of straight line to find equation. Use equation to estimate unknown value			

