Baldragon Academy

National 5 Maths

Checklist

Contents:

Page

Expressions and Formulae

Rounding	2
Surds	
Indices	3
Algebra	
Algebraic Fractions	5
Volumes	
Gradient	6
Circles	6

Relationships

The Straight Line	7
Solving Equations/ Inequations	
Simultaneous Equations	
Change the Subject	
Quadratic Functions	
Properties of Shapes	
Similar Shapes	
Trigonometry (Graphs and Equations)	

Applications

Triangle Trigonometry	16
Vectors	
Percentages	18
Fractions	19
Statistics	20

Expressions and Formulae

Торіс	Skills	Notes		
Rounding				
Round to Decimal places	Example:			
Decimal places	25.1241 = 25.1 to 1 d.p.			
	Example:			
	34.676 = 34.68 to 2 d.p.			
Round to Significant	Example:			
Figures	1276 = 1300 to 2 sig figs			
	Example:			
	0.06356 = 0.064 to 2 sig figs			
	Example:			
	37,684 = 37,700 to 3 sig figs			
	Example:			
	0.005832 = 0.00583 to 3 sig figs			
Surds				
Simplifying	Learn Square Numbers: 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169. Use square numbers as factors:			
	Example:			
	$\sqrt{72} = \sqrt{36} \times \sqrt{2} = 6\sqrt{2}$			
Add/ Subtract	Example:			
	$\sqrt{72} + \sqrt{50} = \sqrt{36} \times \sqrt{2} + \sqrt{25} \times \sqrt{2}$ $= 6\sqrt{2} + 5\sqrt{2}$ $= 11\sqrt{2}$			
Multiply/ Divide	Example:			

	$\sqrt{5} \times \sqrt{15}$		
	$=\sqrt{5 \times 15}$		
	$=\sqrt{75}$		
	$=\sqrt{25} \times \sqrt{3}$		
	$=5\sqrt{3}$		
	Freezenler		
	Example:		
	$\sqrt{48}$		
	$= \sqrt{\frac{\sqrt{48}}{\sqrt{3}}}$ $= \sqrt{\frac{48}{3}}$		
	$= \frac{48}{2}$		
	$\sqrt{\frac{3}{2}}$		
	$=\sqrt{16}$		
	= 4		
Rationalise	Remove surd from denominator		+
Denominator			
	Example:		
	$\frac{1}{\sqrt{3}} = \frac{1 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} = \frac{\sqrt{3}}{3}$		
	$\overline{\sqrt{3}} - \overline{\sqrt{3} \times \sqrt{3}} - \overline{3}$		
Indices			
Use Laws of			
Indices	1. $a^{x} \times a^{y} = a^{x+y}$		
	2. $a^x \div a^y = a^{x-y}$		
	3. $(a^x)^y = a^{xy}$		
	4. $\frac{1}{a^x} = a^{-x}$		
	5. $a^0 = 1$		
Quinetifie	The first number is shown between tend to		
Scientific Notation/	The first number is always between 1 and 10.		
Standard	Example:		
Form			
	$54,600 = 5.46 \times 10^4$		
	Example:		
	$0.000978 = 9.78 \times 10^{-4}$		
Evaluate using	Example:		
Indices	*		
	$27^{\frac{2}{3}} = \sqrt[3]{27^2} = 3^2 = 9$		
	$273 - \sqrt{27^2} - 3 - 7$		
Algebra			

	1	1		
Expand Single	Example:			
Brackets				
	3(x + 4)			
	= 3x + 12			
Expand Two	Use FOIL (Front, Outside, Inside, Last)			
Brackets				
	Example:			
	(x + 3)(x - 2)			
	$= x^{2} + 3x - 2x - 6$ $= x^{2} + x - 6$			
	$= x^{2} + x - 0$			
	Know that avery tarm in the first breakst			
	Know that every term in the first bracket			
	must multiply every term in the second.			
	Example:			
	Example.			
	$(x + 2)(x^2 - 3x - 4)$			
	$= x^{3} - 3x^{2} - 4x + 2x^{2} - 6x - 8$			
	$= x^3 - x^2 - 10x - 8$			
Simplify	Put together the terms that are the same:			
Expression				
	Example:			
	$x^2 + 4x + 3 - 2x + 8$			
	$= x^{2} + 2x + 11$			
	Example:			
	$a \times a \times a$			
	$=a^{3}$			
The start is				
Factorise –	Take the factors each term has in common			
Highest	outside the bracket.			
Common Factor	Example:			
(HCF)	Example:			
	$4x^2 + 8x$			
	= 4x(x+2)			
	$= \frac{1}{4} \alpha (\alpha + 2)$			
	Note: always look for a common factor first			
Factorise –	One square number take away another			
Difference of				
Two Squares	Example:			
	x ² - 9			
	= (x + 3)(x - 3)			

	Example:			
	$5x^2 - 125$			
	$= 5(x^2 - 25)$ (pull out HCF first)			
	= 5(x - 25) (pair out field field) = 5(x + 5)(x - 5)			
Factorise –	2 numbers that multiply to give the value of c			
Trinomial (no	and add to give the value of b			
coefficient)				
	$ax^2 + bx + c$			
	Example:			
	$x^2 - x - 6$			
	= (x - 3)(x + 2)			
Festerias				
Factorise – Trinomial	$ax^2 + bx + c$			
(coefficient)	multiply a and c and find 2 numbers that			
(coefficient)	multiply to give this answer but add to give b			
	Example:			
	$3x^2 - 13x - 10$			
	$= 3x^2 - 15x + 2x - 10$			
	= 3x(x - 5) + 2(x - 5)			
	= (x - 5)(3x + 2)			
Complete the	Example:			
Square				
	$x^{2} + 8x - 13 = (x + 4)^{2} - 13 - 16$			
	$= (x + 4)^2 - 29$			
Algebraic	Fractions			
Simplifying	Step 1: Factorise expressions			
Algebraic	Step 2: Look for common factors.			
Fractions	Step 3: Cancel and simplify			
	Example:			
	$\frac{6x^2 - 12x}{x^2 + x - 6} = \frac{6x(x - 2)}{(x + 3)(x - 2)} = \frac{6x}{x + 3}$			
	$x^{2} + x - 6 - (x + 3)(x - 2) - x + 3$			
Add and	Need common denominator			
Subtract	Vice Vice Smile			
Fractions	Kiss Kiss Smile			
	Example:			
	Erampie.			

	$\frac{5x}{b} + \frac{3d}{2c} = \frac{10xc}{2bc} + \frac{3bd}{2bc} = \frac{10xc + 3bd}{2bc}$		
Multiply Fractions	Multiply the numerators and the denominators together		
	Example:		
	$\frac{2x}{3y} \times \frac{3d}{5m} = \frac{6xd}{15ym} = \frac{2xd}{5ym}$		
Divide Fractions	KFC		
	Keep the first fraction Flip the second fraction Change the divide to a multiply		
	Example:		
	$\frac{6x^2}{7y} \div \frac{4x}{3z} = \frac{6x^2}{7y} \times \frac{3z}{4x} = \frac{18x^2z}{28xy} = \frac{9xz}{14y}$		
Volumes		I	1
Volume of a cylinder	$V = \pi r^2 h$		
Rearrange each of the formulae to	Example: Cylinder has volume 400 cm ³ and radius 6 cm, calculate the height		
find an unknown	$V = \pi r^{2} h$ $400 = \pi \times 6^{2}$ $h = \frac{400}{\pi \times 6^{2}}$		
	height = 3.5 cm		
Gradient		I	1
Find the gradient of a	The gradient is represented by the letter m		
line joining 2 points	Step 1: Select 2 coordinates Step 2: Label them (x_1, y_1) and (x_2, y_2) Step 3: $m = \frac{y_2 - y_1}{x_2 - x_1}$		
	Example:		
	(-4, 4) and (12, - 28)		

	$x_1 y_1 $ $x_2 y_2$		
	$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{(-28) - 4}{12 - (-4)} = \frac{-32}{16} = -2$		
Circles			
Length of Arc	This find the length of the arc of a sector of a circle		
	$arc \ length = rac{angle}{360^{\circ}} \times \pi D$		
Arc of Sector	sector area = $\frac{angle}{360^\circ} \times \pi r^2$		

Relationships

Торіс	Skills	Notes	
Straight	Line		
Gradient	 Represented by m Measure of steepness of slope + gradient = line increasing 		

	 - gradient = line decreasing 				
y - intercept	 Represented by c Shows where the line cuts the y - axis Find by setting x = 0 				
Gradient					
	The gradient is represented by the letter m				
	Step 1: Select 2 coordinates Step 2: Label them (x_1, y_1) and (x_2, y_2) Step 3: $m = \frac{y_2 - y_1}{x_2 - x_1}$				
	Example:				
	(-4, 4) and (12, -28) $x_1 y_1 x_2 y_2$				
	$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{(-28) - 4}{12 - (-4)} = \frac{-32}{16} = -2$				
Find	Step 1: Find gradient m				
equation of a	Step 2: Find y-intercept c				
line	Step 3: Substitute into $y = mx + c$				
Solving 1	Equations/ Inequations				L
Solving	Use suitable method:				
Equations	ose suitable method.				
Equations	Example:				
	5(x + 4) = 2(x - 5)				
	5x + 20 = 2x - 10				
	5x = 2x - 30				
	3x = -30				
	x = -10				
Solving	Solve the same way as equations.				
Inequations					
	Note: When dividing by a negative change the sign				
	Example:				
	-3x < 15				
	x > -5				
Simultar	neous Equations	1	1	1	
	*				

Solve by	Step 1: Rearrange formula if needed to y = mx +	
sketching		
lines	Step 2: Sketch lines using table of points	
	Step 3: Find coordinate of point of intersection	
Solve by	Step 1: Scale equations to make one unknown	
elimination	equal	
	Step 2: Add or subtract equations to eliminate	
	term and solve.	
	Step 3: Substitute number to find second term.	
	Example:	
	$4a + 3b = 7 \rightarrow 1$ $2a - 2b = -14 \rightarrow 2$	
	$2a - 2b = -14 \rightarrow 2$	
	1 × 2 , 2 × 3	
	$8a + 6b = 14 \rightarrow 3$	
	$6a - 6b = -42 \rightarrow 4$	
	04 00 - 42 / 4	
	3 + 4	
	14a = - 28	
	a = -2	
	substitute a = -2 into 1	
	4(-2) + 3b = 7	
	-8 + 3b = 7	
	3b = 15	
	b = 5	
Change t	he Subject	
Linear	Rearrange equations to change the subject:	
Equations	Rourrange equations to enange the bubject.	
-1	Example:	
	D = 4C - 3 [C]	
	4C - 3 = D	
	4C = D + 3	
	$C = \frac{D+3}{4}$	
	4	

Equations with powers or roots	Example:		
	$V = \pi r^2 h \qquad [\mathbf{r}]$		
	$\pi r^2 h = V$		
	$r^2 = \frac{V}{\pi h}$		
	$r = \sqrt{\frac{V}{\pi h}}$		
Quadrati	ic Functions		

<pre>Step 1: Identify shape (+ or -) Step 2: Identify roots (x - intercepts) x = -a, x = b Step 3: Find y-intercept (make x=0) Step 4: Identify turning point</pre>				
Example:				
y = (x + 4)(x - 2)				
+ graph so min turning point				
roots: x = -4, and x = 2				
y-intercept: $y = (0 + 4)(x - 2) = -8$				
turning point: halfway between roots so x = -1				
sub x = -1 into y = $(x + 4)(x - 2)$ = $(-1 + 4)(-1 - 2)$ = $(3)(-3)$ = -9				
so turning point = (-1, -9)				
Step 1: Equate to zero Step 2: Factorise quadratic Step 3: Set each factor equal to zero Step 4: Solve each factor to find roots Example: $y = x^2 - 5x - 6$ (x - 6)(x + 1) = 0 x - 6 = 0 and $x + 1 = 0x = 6$ and $x = -1$				
Read roots from graph				<u> </u>
	Step 2: Identify roots (x - intercepts) x = -a, x = b Step 3: Find y-intercept (make x=0) Step 4: Identify turning point Example: y = (x + 4)(x - 2) + graph so min turning point roots: x = -4, and x = 2 y-intercept: y = (0 + 4)(x - 2) = -8 turning point: halfway between roots so x = -1 sub x = -1 into y = (x + 4)(x - 2) = (-1 + 4)(-1 - 2) = (3)(-3) = -9 so turning point = (-1, -9) Step 1: Equate to zero Step 2: Factorise quadratic Step 3: Set each factor equal to zero Step 4: Solve each factor to find roots Example: y = x ² - 5x - 6 (x - 6)(x + 1) = 0 x - 6 = 0 and x + 1 = 0 x = 6 and x = -1	Step 2: Identify roots (x - intercepts) x = -a, x = b Step 3: Find y-intercept (make x=0) Step 4: Identify turning point Example: y = (x + 4)(x - 2) + graph so min turning point roots: x = -4, and x = 2 y-intercept: y = (0 + 4)(x - 2) = -8 turning point: halfway between roots so x = -1 sub x = -1 into y = (x + 4)(x - 2) = (-1 + 4)(-1 - 2) = (3)(-3) = -9 so turning point = (-1, -9) Step 1: Equate to zero Step 2: Factorise quadratic Step 3: Set each factor equal to zero Step 4: Solve each factor to find roots Example: y = x ² - 5x - 6 (x - 6)(x + 1) = 0 x - 6 = 0 and x + 1 = 0 x = 6 and x = -1	Step 2: Identify roots (x - intercepts) x = -a, x = b Step 3: Find y-intercept (make x=0) Step 4: Identify turning point Example: y = (x + 4)(x - 2) + graph so min turning point roots: x = -4, and x = 2 y-intercept: y = (0 + 4)(x - 2) = -8 turning point: halfway between roots so x = -1 sub x = -1 into y = (x + 4)(x - 2) = (-1 + 4)(-1 - 2) = (3)(-3) = -9 so turning point = (-1, -9) Step 1: Equate to zero Step 2: Factorise quadratic Step 3: Set each factor equal to zero Step 4: Solve each factor to find roots Example: y = x ² - 5x - 6 (x - 6)(x + 1) = 0 x - 6 = 0 and x + 1 = 0 x = 6 and x = -1	Step 2: Identify roots (x - intercepts) x = -a, x = b Step 3: Find y-intercept (make x=0) Step 4: Identify turning point Example: y = (x + 4)(x - 2) + graph so min turning point roots: x = -4, and x = 2 y-intercept: y = (0 + 4)(x - 2) = -8 turning point: halfway between roots so x = -1 sub x = -1 into y = (x + 4)(x - 2) = (-1 + 4)(-1 - 2) = (3)(-3) = -9 so turning point = (-1, -9) Step 1: Equate to zero Step 2: Factorise quadratic Step 3: Set each factor equal to zero Step 4: Solve each factor to find roots Example: y = x ² - 5x - 6 (x - 6)(x + 1) = 0 x - 6 = 0 and x + 1 = 0 x = 6 and x = -1

Solving	x = 2, x = -2 When asked to solve a quadratic to a number of			
Quadratics –	decimal places use the quadratic formula:			
Quadratic Formula	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$			
	where $y = ax^2 + bx + c$			
	Example:			
	solve $y = x^2 - 6x + 2$ to 1 d.p.			
	a = 1, b = -6, c = 2			
	$x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \times 1 \times 2}}{2 \times 1}$ $x = \frac{6 \pm \sqrt{28}}{2}$			
	$x = \frac{6 + \sqrt{28}}{2} \qquad x = \frac{6 - \sqrt{28}}{2}$ $x = 5.6 \qquad x = 0.4$			
Discriminant	b² - 4ac where $y = ax^2 + bx + c$		Ţ	
	The discriminant describes the nature of the roots			
	$b^2 - 4ac > 0$ means 2 real roots			
	$\begin{array}{ll} b^2 - 4ac > 0 & means \ 2 \ real \ roots \\ b^2 - 4ac = 0 & means \ equal \ roots \\ b^2 - 4ac < 0 & means \ no \ real \ roots \end{array}$			
	Example:			
	Determine the nature of the roots of the quadratic $y = x^2 + 5x + 4$			

	a = 1, b = 5, c = 4 $b^{2} - 4ac = 5^{2} - 4 \times 1 \times 4$ = 25 - 16 = 9 Since $b^{2} - 4ac > 0$ means 2 real roots
	Example: Determine p, where x ² + 8x + p has equal roots
	$b^{2} - 4ac = 0$ $8^{2} - 4 \times 1 \times p = 0$ 64 - 4p = 0 -4p = -64 p = 16
Propertie	es of Shapes
Circles	
Pythagoras	Use Pythagoras Theorem to solve problems involving circles and 3D shapes. Example: Find the depth of water in a pipe of radius 10 cm. r is the radius $x^2 = 10^2 - 9^2$ $x^2 = 19$ x = 4.4 Depth = 10 - 4.4 = 5.6 cm

Similar S	Shapes	 	
Linear Scale Factor	$Linear\ Scale\ Factor = \frac{New\ Length}{Original\ Length}$		
Area Scale Factor	$Area Scale Factor = \left(\frac{New Length}{Original Length}\right)^2$		
Volume Scale Factor	$Volume \ Scale \ Factor = \left(\frac{New \ Length}{Original \ Length}\right)^3$		
Trigonor	netry		
Trig Graphs - Sine Curve	y = asinb(x + d) + c a = how much the sin graph has stretched along the y - axis b = no. of waves between 0 and 360 c = movement of graph vertically d = movement of graph horizontally Example: y = sin x maxima and minima 1 and -1, period = 360° y y y y y y y y y y y y y		

CAST					
Diagram					
Diagram	Sin	All			
	(positive)	(positive)			
	180 - ×	×			
	100 - X	~			
	100	360 - ×			
	180 + ×	300 - X			
	Tan	Cos			
	(positive)	(positive)			
			•		
Solving Trig	Use the diagram ab	ove to solve trig equa	tions:		
Equations	Evemples				
	Example:				
	Solve 2sinx - 1 =	. 0			
	2sinx 1				
		= 0.5			
	Since sin is positive	e we are in Q1 and Q2			
	1				
	Q1: $x = \sin^{-1}(0.5)$	Q2: 180° - 30	$0^\circ = 50^\circ$		
	= 30°				
	Example:				
		_			
	Solve $4\tan x + 5 =$				
	4tanx				
	tanx	x = -1.25			
	Since tan is negativ	e we are in Q2 and Q4			
	Since tail is negativ	e we are ili Q2 allu Q4	t		
	Q1: $x = \tan^{-1}(1.25)$				
	$= 51.3^{\circ}$				
	5-05				
	Q2: $x = 180^{\circ} - 51.3^{\circ}$	= 128.7°			
	$Q4: x = 360^\circ - 51.3^\circ$				
Trig	Know:				
Identities					
	sin	$e^2\theta + \cos^2\theta = 1$			
		$\tan \theta = \frac{\sin \theta}{\cos \theta}$			
		$\cos heta$			

Applications

Торіс	Skills	Notes	
Triangle	Trigonometry		
Triangle	Label Triangle		
Area of a triangle	$A = \frac{1}{2}absinC$		
Sine Rule	$\frac{a}{sinA} = \frac{b}{sinB} = \frac{c}{sinC}$		
Cosine Rule	side: $a^2 = b^2 + c^2 - 2bccosA$ angle: $cosA = \frac{b^2 + c^2 - a^2}{2bc}$		
Bearings	Use knowledge of bearings to solve trig problems including knowledge of corresponding, alternate, and supplementary angles		

	North North 8 km 60° 11 km 13 km C		
Vectors			
2D Line Segments	Add or subtract 2D line segments Vectors end to end Arrows in same direction 		
Position Vectors	The position vector of a coordinate is the vector from the origin to the coordinate Example: A (4, -3) has the position vector $\mathbf{a} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}$		
Finding a Vector from 2 coordinates	To find a vector between 2 points, A and B \rightarrow AB = b - a Example: \rightarrow Calculate AB where A = (3, 2) and B = (7, 6) \rightarrow AB = b - a $= \begin{bmatrix} 7 \\ 6 \end{bmatrix} - \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$		

3D Vectors	Determines coordinates of a point from a diagram representing a 3D object
	Look at difference in x, y, and z axes individually
	Example:
	z y A (4, 5, 0) x x
	<i>C</i> (15, 9, 0)
Vector	Add and Subtract 2D and 3D vector
Components	components
	Example:
	$\mathbf{a} = \begin{bmatrix} 1\\1\\4 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 3\\2\\5 \end{bmatrix}, \mathbf{a} + \mathbf{b} = \begin{bmatrix} 1+3\\1+2\\4+5 \end{bmatrix}$
	$= \begin{pmatrix} 4 \\ 3 \\ 9 \end{pmatrix}$
	Multiply vector components by a scalar
	Example:
	$2\mathbf{a} = 2 \begin{bmatrix} 1\\1\\4 \end{bmatrix} = \begin{bmatrix} 2\\2\\8 \end{bmatrix}$
	Find the magnitude of a 2D or 3D vector:
	Example:
	For vector $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$
	$ \mathbf{u} = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$

Percenta	iges		
Compound Interest	Calculate multiplier from percentage then use multiplier to calculate appreciation/ depreciation		
	Example:		
	£500 with 5% interest for 3 years		
	100% + 5% = 105% = 1.05		
	$500 \times (1.05^3) = £578.81$		
Percentage Increase / Decrease	% increase or decrease = $\frac{difference}{original} \times 100$		
Reverse Percentages	Find initial amount after a percentage increase or decrease. Calculate 1% or other easy percentage to find and multiply up to 100%.		
	Example:		
	A watch has been reduced by 30% to £42. What was it's original price?		
	$70\% = \pounds 42$ $10\% = \pounds 6$ (divide by 7 to find 10%) (multiply by 10 to find 100%) $100\% = \pounds 60$		
	Original price was £60		
Fraction	S		
Add and	Find a common denominator		
Subtract Fractions	Kiss Kiss Smile		
	Example:		
	$\frac{2}{3} + \frac{4}{5} = \frac{10}{15} + \frac{12}{15} = \frac{22}{15}$		
Add and Subtract Mixed	Make improper fractions. Then add or subtract as normal.		
Fractions	Example:		

	$2\frac{2}{3} + 3\frac{4}{5} = \frac{8}{3} + \frac{19}{5} = \frac{40}{15} + \frac{57}{15} = \frac{97}{15}$			
Multiply Fractions	Multiply top with top, and bottom with bottom			
	Example:			
	$\frac{3}{7} \times \frac{4}{5} = \frac{12}{35}$			
Multiply Mixed	Make top heavy fraction then as above:			
Fractions	Example: $3\frac{3}{7} \times \frac{4}{5} = \frac{23}{7} \times \frac{4}{5} = \frac{92}{35}$			
Divide Fractions	KFC			
Tractions	Keep the first fraction Flip the second fraction Change the divide to a multiply			
	Example:			
	$\frac{6}{7} \div \frac{2}{3} = \frac{6}{7} \times \frac{3}{2} = \frac{18}{10} = \frac{9}{5}$			
Statistics	5		[
Mean	$\bar{x} = \frac{\sum n}{n} = \frac{sum \ of \ data}{number \ of \ terms}$			
Five-Figure Summary	$l = lowest term$ $Q_1 = lower quartile$ $Q_2 = median$ $Q_3 = upper quartile$ $h = highest term$			
Semi- Interquartile Range	$SIQR = \frac{Q_3 - Q_1}{2}$			
Standard Deviation	$SD = \sqrt{\frac{\sum(x - \bar{x})}{n - 1}}$			
Comparing Data	Always compare the measure of average and the measure of spread.			

	Example: On average, Stacey runs more because her mean running time is greater, but Steve is more consistent as his standard deviation is smaller.		
Line of Best Fit	Use knowledge of straight line to find equation. Use equation to estimate unknown value		