

Baldragon Academy
Numeracy Techniques

Calculating methods

Addition

Example 534 + 2678

Place the digits in the correct "place value" columns with the numbers under each other. Begin adding in the ones column.

Subtraction

Example: 7689-749

Place the digits in the correct "place value" columns with the numbers under each other.

Begin subtracting in the ones column.
You can't subtract 9 from 6 so move 1 ten from the 8 tens to the 6 ones to make 16 ones.

Note that the same has happened with the hundreds.

Multiplication

Example 56×34

Separate the 56 and 34 into tens and ones.

Multiply the columns with the rows and place the answers in the grey boxes.

x	50	6
30	1500	180
4	200	24

Add the numbers: $1500+180+200+24$

$$
=1904
$$

Division

Example: $432 \div 15$

Long division method

15 | | 2 | 8 |
| :--- | :--- | :--- |
| 4 | 3 | 2 |
| 3 | 0 | \downarrow |
| | 1 | 3 |
| 1 | 2 | |
| 1 | 2 | 0 |
| | 1 | 2 |

28 r $12 \quad 28$ with a remainder of 12.

Concise method

4 is not divisible by 15 , so you divide 43 by 15 .

15

$3 \times 15=45$ which is more than 43 so choose
$2 \times 15=30$.
Subtract 30 from 43 to give a remainder of 13 .
Write 13 in front of the 2 to give 132.
$8 \times 15=120$.
Subtract 120 from 132 to give a remainder of 12 .
Therefore, the answer is: 28 r 12

Division without tears!

x	15	Sum
10	150	150
10	150	300
5	75	375
2	30	405
1	15	420
28		$r 12$

We use the 10,5,2 and 1 tables which are easier.
$10 \times 15=150$ which is a great deal less than 432 .
Another 10×15 will make a total of 300 .
Another 10×15 will give a total of 450 which is more
than 432 so we use $5 \times 15=75$ giving a total of 375 .
5×15 is too big, so use $2 \times 15=30$ gives 405 .
2×15 is too big, so use $1 \times 15=15$ to give 420 .
1×15 is too big, therefore, the remainder is $432-420=12$.
By adding the " x " column we can see how many 15 s there are in 432. Answer: $10+10+5+2+1=28$.

Even numbers
$2,4,6,8,10,12$, \qquad
2 divides exactly into every even number.
Odd numbers

1, 3, 5, 7, 11, \qquad
2 doesn't divide exactly into odd numbers.

Triangular numbers
1
$1+2$
$=1$
$1+2+3$

$$
=3
$$

$1+2+3+4$
$=6$
$1+2+3+4+5$
$=10$
$1+2+3+4+5+6$
$=15$
$1+2+3+4+5+6+7$

Square numbers
$1^{2}=1 \times 1=1$
$2^{2}=2 \times 2=4$
$3^{2}=3 \times 3=9$
$4^{2}=4 \times 4=16$
$5^{2}=5 \times 5=25$
$6^{2}=6 \times 6=36$
$7^{2}=7 \times 7=49$
The first 7 square numbers are: $1,4,9,16,25,36,49$

Factors

A factor is a number that divides exactly into another number.
The factors of 12 are:
$1,2,3,4,6,12$
The factors of 13 are 1 and 13

The first seven triangular numbers are: 1, 3, 6, 10, 15, 21, 28

Prime numbers
A prime number has exactly two factors namely 1 and itself.

The factors of 17 are 1 and 17 , therefore 17 is a prime number.

The prime numbers between 1 and 100 are:
$2,3,5,7,11,13,17,19,23$, 29, 31, 37, 41, 43, 47, 53, 59, 61, $67,71,73,79,83,89,97$
Note: 1 is not a prime number!

Place value

Thousands (1000) Hundreds (100) Tens (10) Ones (1) \bullet Tenths $\frac{1}{1}$ Hundredths 10 100
Thousandths $\underline{1}$ 1000
10 ones
10 tens $=1$ ten
10 hundreds $=1$ hundred $=1$ thousand

The placement of the digits within the number gives us the value of that digit.
The digit 4 has the value of

4 thousand (4000)

The digit 8 has the value 8 tens (80)

The digit 7 has the value 7 thousandths ($7 / 1000$)

Inverse operations

Inverse operations allow you to undo a sum.

We use inverse operations when we work with function machines.

$$
\text { Input } ? \rightarrow \div 3 \rightarrow-7=3 \text { Output }
$$

If the output is 3 , the input? must be 30 .

Fractions

The numerator is the number on the top of the fraction

The denominator is the number on the bottom

If we have a number and a fraction mixed we call it a mixed fraction.

When the numerator is larger than the denominator we call this an improper fraction.

Equivalent fractions

All the fractions below represent the same proportion. Therefore they are called equivalent fractions.

$1 / 2$

$2 / 4$

4/8

$$
\begin{aligned}
& \frac{1}{2}=\frac{2}{4}=\frac{3}{6}=\frac{4}{8}=\frac{5}{10}=\ldots \\
& \frac{1}{3}=\frac{2}{6}=\frac{3}{9}=\frac{4}{12}=\frac{5}{15}=\ldots \\
& \frac{1}{4}=\frac{2}{8}=\frac{3}{12}=\frac{4}{16}=\frac{5}{20}=\ldots \\
& \frac{3}{4}=\frac{6}{8}=\frac{9}{12}=\frac{12}{16}=\frac{15}{20}=\ldots
\end{aligned}
$$

Decimals

A decimal is any number that contains a decimal point.
The following are examples of decimals.
0.549
1.25
$256 \cdot 4$
3.406

Percentages

7\% means
7/100
63\% means
100\% means
120\% means
63/100

100/100 or 1 whole.
120/100 It is possible to have a percentage that is greater than 1 whole.

Changing decimals and fractions into percentages

To change a decimal or fraction to a percentage you have to multiply with 100%.

$$
\begin{aligned}
& 0.75 \times 100 \%=75 \% \\
& \frac{13}{120} \times 5100 \%=65 \%
\end{aligned}
$$

To change a fraction into a decimal you have to divide the numerator with the denominator.

$$
\frac{3}{8}=3 \div 8=0.375
$$

It is also possible to change a fraction into a percentage like this:

$$
\underline{2}=2 \div 3=0.6666 \ldots=0.67(\text { to } 2 \text { decimal places })
$$

$$
3
$$

then $0.67 \times 100 \%=67 \%$
Therefore $2 / 3=67 \%$ (to the nearest one part of a hundred)

Useful fractions, decimals and percentages

Fraction	Decimal	Percentage
1	1.0	100%
$1 / 2$	0.5	50%
$1 / 3$	$0.33 \ldots \ldots$	33%
$1 / 4$	0.25	25%
$3 / 4$	0.75	75%
$1 / 10$	0.1	10%
$2 / 10(=1 / 5)$	0.2	20%
$3 / 10$	0.3	30%

Ratio

Ratio is used to make a comparison between two things.
Example

In this pattern we can see that there are 3 happy faces to every sad face.
We use the symbol : to represent to in the above statement, therefore we write the ratio like this:

Ratio is used in a number of situations:

- In a cooking recipe
- In building when mixing concrete
- It is used in the scale of maps e.g. if a scale of $1: 100000$ is used, it means that 1 cm on the map represents 100000 cm in reality which is 1 km .

```
Sad : Happy
    1 : 3
```


Integers / Directed numbers

The negative sign (-) tells us the number is below zero e.g. -4. The number line is useful when working with negative numbers. Below is a part of the number line.
 than the numbers on the left e.g. 5 is greater than 2 and 2 is greater than -3 . Note that -3 is greater than -8.

Adding and subtracting integers

The Number line game can be used to add and subtract negative numbers:

Rules:

Start at zero facing the positive direction.
Ignore any + signs.
The - sign means "make half a turn".
When you see a number, step the value of the number in the direction you are facing.
After stepping, face the positive direction before continuing with the sum.
Your position at the end will be the answer.
Example: - 3-4+6

Sum	-8	-7	-6	-5	-4	-3	-2	-1	0	1	Method
									\rightarrow		Start at zero.
3						\leftarrow			\leftarrow		Make half a turn. Step 3.
						\rightarrow					Face the positive.
4		\leftarrow				\leftarrow					Make half a turn. Step 4.
		\rightarrow									Face the positive.
6		\rightarrow						\rightarrow			Ignore the + . Step 6.
								()			The answer is -1 .

Example: 2+-8--9

-9	-8	-7		-	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
													()			

- Start at zero facing the positive direction.
- Step 2 and face the positive direction.
- Ignore the + , make half a turn, step 8 and face the positive direction.
- Make half a turn, make half a turn, step 9 and note your position.

The answer is 3 :

Multiplying and dividing integers

We multiply and divide directed numbers in the usual way while remembering these very important rules:

Two signs the same, a positive answer.
Two different signs, a negative answer.

Remember, if there is no sign before the number, it is positive.

Examples:

5×-7	$=-35$	(different signs give a negative answer)
-4×-8	$=32$	(two signs the same give a positive answer)
$48 \div-6$	$=-8$	(different signs give a negative answer)
$-120 \div-10$	$=12 \quad$ (two signs the same give a positive answer)	

Coordinates

We use coordinates to describe location.

The coordinates of the points are:
$A(1,2)$
$B(-2,3)$
$C(-2,-2)$
$D(3,-2)$

There is a special name for the point $(0,0)$ which is the origin.
The first number (x-coordinate) represents the distance across from the origin.
The second number (y-coordinate) represents the distance going up or down.
Example : The point $(1,2)$ is one across and two up from the origin.

Inequalities

We us the = sign to show that two sums are equal. If one sum is greater than or less than the other we use inequalities:

$$
\begin{array}{ll}
<\text { less than } & >\text { more than } \\
\leq \text { less than or equal to } & \geq \text { more than }
\end{array}
$$

Examples :
$5<8$
$43>6$
$x \leq 8$
$y \geq 17$

Names of two dimensional shapes

A polygon is a closed shape made up of straight lines.
A regular polygon has equal sides and equal angles.

Scalene triangle

Parallelogram
Opposite sides parallel and equal.

Kite

Right angled triangle

Square

Rhombus
Opposite sides parallel, all sides equal.

Isosceles triangle

Rectangle

Trapezoid
One pair of opposite sides parallel.

Hexagon

Circle

3D shapes

3D means three dimensions - 3D shapes have length, width and height.

| Nhame | Faces | Edges | Vertices
 (corners) |
| :---: | :---: | :---: | :---: | :---: |
| Triangular
 Pyramid | 4 | 6 | 4 |

Euler's formula:
Number of faces - Number of edges + Number of vertices $=2$

The circle

Circumference of a circle

The circumference of a circle is the distance around the circle.

$$
\begin{gathered}
\text { Circumference }=\pi \times \text { diameter } \\
\text { Circumference }=\pi d
\end{gathered}
$$

Since the diameter is twice the length of the radius, we can also write
Circumference $=\pi \times 2 \times$ radius
Circumference $=2 \pi r$

π (pi)

π is a Greek letter which represents $3.1415926535897932384 \ldots$. . (a decimal that carries on for ever without repetition)
We round π to $3 \cdot 14$ in order to make calculations or we use the π button on the calculator.

Perimeter

Perimeter is the distance around the outside of a shape. We measure the perimeter in millimeters (mm), centimeters (cm), meters (m), etc.

This shape has been drawn on a 1 cm grid. Starting on the orange circle and moving in a clockwise direction, the distance travelled is ...
$1+1+1+1+1+1+1+1+1+2+1+2=14 \mathrm{~cm}$
Perimeter $=14 \mathrm{~cm}$

Area of 2D Shapes

The area of a shape is how much surface it covers. We measure area in square units e.g. centimeters squared (cm^{2}) or meters squared (m^{2}).

Areas of irregular shapes

Given an irregular shape, we estimate its area through drawing a grid and counting the squares that cover the shape.

Whole square count as one.

Half a square or more count as one.

Less than half a square ignore.

Area $=11 \mathrm{~cm}^{2}$.
Remember that this is an estimate and not the exact area.

Area formula

Rectangle

Multiply the length with the width.

$$
\text { Area }=1 \times w
$$

Trapezoid

Add the parallel sides, multiply with the height and divide by two.

$$
\text { Area }=\frac{(a+b) h}{2}
$$

Circle

Multiply the radius with itself, then multiply with π.

$$
\text { Area }=r \times r \times \pi=\pi r^{2}
$$

Triangle

Multiply the base with the height and divide by two.
Area $=\frac{b \times h}{2}$

Parallelogram

Multiply the base with the height.

$$
\text { Area }=b \times h
$$

Volume Volume is the amount of space that an object contains or takes
up. The object can be a solid, liquid or gas.

Volume is measured in cubic units e.g. cubic centimeters (cm^{3}) and cubic meters (m^{3}).

Rectangular Prism

Note that a rectangular prism has six rectangular faces.

Prism

A prism is a 3-dimensional object that has the same shape throughout its length i.e. it has a uniform cross-section.

Volume of a prism $=$ area of the base \times length

Metric units of length

Millimeter	mm	$10 \mathrm{~mm}=1 \mathrm{~cm} 1000 \mathrm{~mm}=1 \mathrm{~m}$
Centimeter	cm	$100 \mathrm{~cm}=1 \mathrm{~m} \quad 100000 \mathrm{~cm}=1 \mathrm{~km}$
Meter	m	$1000 \mathrm{~m}=1 \mathrm{~km}$
Kilometer	km	
Imperial/Standard units of length		
Inch	in or" $12 \mathrm{in}=1 \mathrm{ft}$	
Foot	ftor	$3 \mathrm{ft}=1 \mathrm{yd}$
Yard	yd	$1760 \mathrm{yd}=1 \mathrm{mile}$
Mile		

Metric units of mass

Milligram	mg	$1000 \mathrm{mg}=1 \mathrm{~g} \quad 1000000 \mathrm{mg}=1 \mathrm{~kg}$
Gram	g	$1000 \mathrm{~g}=1 \mathrm{~kg}$
Kilogram	kg	$1000 \mathrm{~kg}=1 \mathrm{t}$
Metric ton	t	

Imperial/Standard units of mass

Ounce	$o z$	$16 \mathrm{oz}=1 \mathrm{lb}$
Pound	lb	$2000 \mathrm{lb}=1$ ton

Metric units of volume
Milliliter
ml
$1000 \mathrm{ml}=11$
Liter

Imperial/Standard units of volume
Ounce oz
Cup c

Pint pt $8 \mathrm{oz}=1 \mathrm{c}$
Quart
Gallon q^{\dagger}

Gallo
gal
$4 \mathrm{qt}=1 \mathrm{gal}$

Converting between imperial and metric units

Length

1 inch	$\approx 2.5 \mathrm{~cm}$
1 foot	$\approx 30 \mathrm{~cm}$
1 mile	$\approx 1.6 \mathrm{~km}$
5 miles	$\approx 8 \mathrm{~km}$

Weight/Mass
1 pound ~ 454 g
2.2 pounds ~ 1 kg

1 ton ~ 1 metric tonne
Volume

1 gallon	≈ 4.5 litre
1 pint	≈ 0.6 litre $(568 \mathrm{ml})$
$1 \frac{3}{4}$ pints	≈ 1 litre

Temperature

The freezing point of water is $0^{\circ} \mathrm{C}$ or $32^{\circ} \mathrm{F}$

Time

1000 years	$=1$ millennium
100 years	$=1$ century
10 years	$=1$ decade
60 seconds	$=1$ minute
60 minutes	$=1$ hour
24 hours	$=1$ day
7	$=1$ week
12 mons	$=1$ year
52 weeks	≈ 1 year
365 days	≈ 1 year
366 days	≈ 1 leap year

The Yearly Cycle

The 24 hour and 12 hour clock

	24 hour	12 hour	
Midnight	00:00	12.00 a.m.	Midnight
The 24 hour clock always uses 4 digits to show the time. The 24 hour system does not use a.m. nor p.m.	01:00	1:00 a.m.	The 12 hour clock shows the time with a.m. before midday and p.m. after mid-day.
	02:00	2:00 a.m.	
	03:00	3:00 a.m.	
	04:00	$4.00 \mathrm{a} . \mathrm{m}$.	
	05:00	5:00 a.m.	
	06:00	6:00 a.m.	
	07:00	7:00 a.m.	
	08:00	8:00 a.m.	
	09:00	9:00 a.m.	
	10:00	10:00 a.m.	
	11:00	11:00 a.m.	
Mid-day	12:00	12:00 p.m.	Mid-day
	13:00	1:00 p.m.	
	14:00	2:00 p.m.	
-11 18	15:00	3:00 p.m.	
7.5	16:00	4:00 p.m.	-12 12
. 15	17:00	5:00 p.m.	$10 \frac{117}{17}$
Tor	18:00	6:00 p.m.	9×3
	19:00	7:00 p.m.	$8 \rightarrow 4$
	20:00	8:00 p.m.	65
	21:00	9.00 p.m.	-
	22:00	10.00 p.m.	
	23:00	11:00 p.m.	

Time vocabulary

02:10	Ten past two in the morning	2:10 a.m.
07:15	Quarter past seven in the morning	7:15 a.m.
15:20	Twenty past three in the afternoon	3:20 p.m.
21:30	Half past nine in the evening	9:30 p.m.
14:40	Twenty to three in the afternoon	$2: 40$ p.m.
21:45	Quarter to ten at night	$9: 45$ p.m.

Bearings

A bearing describes direction. A compass is used to find and follow a bearing.
The diagram below shows the main compass points and their bearings.

The bearing is an angle measured clockwise from the North.
Bearings are always written using three figures e.g. if the angle from the North is 5°, we write 005°.

Data

We collect data in order to highlight information to be interpreted.
There are two types of data:

Discrete data
Things that are not measured:

- Colors
- Days of the week
- Favorite drink
- Number of boys in a family
- Shoe size

Continuous data

Things that are measured:

- Pupil height
- Volume of a bottle
- Mass of a chocolate bar
- Time to complete a test
- Area of a television screen

Discrete data

Collecting and recording

We can record data in a list
e.g. here are the numbers of pets owned by pupils in form $9 C$:
$1,2,1,1,2,3,2,1,2,1,1,2,4,2,1,5,2,3,1,1,4,10,3,2,5,1$

A frequency table is more structured and helps with processing the information.

Number of pets	Tally	Frequency
1	H林	10
2	HI III	8
3	III	3
4	II	2
5	II	2
6		0
7		0
8		0
9		0
10	I	1

Displaying

In order to communicate information, we use statistical diagrams. Here are some examples:

Pictogram

A pictogram uses symbols to represent frequency. We include a key to show the value of each symbol.

The diagram below shows the number of pets owned by pupils in $9 C$.

Represents two pupils.

1	$\%$
2	$\%$
3	π
4	$\%$
5	$\%$

Bar chart

The height of each bar represents the frequency. All bars must be the same width and have a constant space between them. Notice that the scale of the frequency is constant and starts from 0 every time. Remember to label the axes and give the chart a sensible title.

Pets owned by pupils of $9 C$

Number of animals

Vertical line graph

A vertical line graph is very similar to a bar chart except that each category has a line instead of a bar. Notice that the category labels are directly below each line.

Pets owned by pupils of $9 C$

Number of animals

Pie chart/ Circle Graph

The complete circle represents the total frequency. The angles for each sector are calculated as follows:
Here is the data for the types of pets owned by 9C

Type of pet	Frequency	Angle of the sector	
Cats	13	$13 \times 10^{\circ}=130^{\circ}$	
Dogs	11	$11 \times 10^{\circ}=110^{\circ}$	
Birds	5	$5 \times 10^{\circ}=50^{\circ}$	
Fish	7	$7 \times 10^{\circ}=70^{\circ}$	
Total	36		

Divide 360° by the total of the frequency:
$360^{\circ} \div 36=10^{\circ}$
Therefore 10°
represents one animal

Remember to check that the angles of the sectors add up to 360°.

Types of pet owned by 9 C

Continuous data

Displaying

With graphs representing continuous data, we can draw lines to show the relationship between two variables. Here are some examples:

Line graph

The temperature of water was measured every minute as it was heated and left to cool. A cross shows the temperature of the water at a specific time. Through connecting the crosses with a curve we see the relationship between temperature and time.

The line enables us to estimate the temperature of the water at times other than those plotted e.g. at $6 \frac{1}{2}$ minutes the temperature was approximately $40^{\circ} \mathrm{C}$.

Conversion graph

We use a conversion graph for two variables which have a linear relationship. We draw it in the same way as the above graph but the points are connected with a straight line.

From the graph, we see that 8 km is approximately 5 miles.

Scatter Plot

We plot points on the scatter plot in the same way as for the line graph. We do not join the points but look for a correlation between the two sets of data.

Positive correlation

No correlation

Negative correlation

If there is a correlation, we can draw a line of best fit on the diagram and use it to estimate the value of one variable given the other.

The following scatter graph shows a positive correlation between the weights and heights of 12 pupils.

The line of best fit estimates the relationship between the two variables.
Notice that the line follows the trend of the points.
There are approximately the same number of points above and below the line.
We estimate that a pupil 155 cm tall has a weight of 60 kg .

Important things to remember when drawing graphs

- Title and label axes
- Sensible scales
- Careful and neat drawing with a pencil

Average

The average is a measure of the middle of a set of data. We use the following types of average:

Mean - We add the values in a set of data, and then divide by the number of values in the set.

Median - Place the data in order starting with the smallest then find the number in the middle. This is the median. If you have two middle numbers then find the number that's halfway between the two.

Mode - This is the value that appears most often.

Spread

The spread is a measure of how close together are the items of data. We use the following to measure spread:

Range - The range of a set of data is the difference between

Example

Find the mean, median, mode, and range of the following numbers:

$\mathbf{4}, \mathbf{3}, \mathbf{2}, \mathbf{0}, \mathbf{1}, \mathbf{3}, \mathbf{1}, \mathbf{1}, \mathbf{4}, \mathbf{5}$		
Mean $\frac{4+3+2+0+1+3+1+1+4+5}{10}$	$=2.4$	
Median $0,1,1,1,2,3,3,4,4,5$	$\frac{2+3}{2}$	$=2.5$
Mode $\quad 0,1,1,1,2,3,3,4,4,5$	$=1$	
Range $\quad 0,1,1,1,2,3,3,4,4,5 \quad 5-0$	$=5$	

Vocabulary

Acceleration
Acute angle
Angle
Approximation
Area
Average
Axis
Balance
Bearing
Bills
Bisect/Halve
Boundary
Calculator
Capacity
Cash
Circle
Circumference
Clockwise
Column
Compass (drawing circles)
Compass (points North)
Cone
Co-ordinates
Corresponding
Counter-clockwise
Cross-section
Cube
Curve
Cylinder
Cheapest
Decimal

Density
Deposit
Depth
Diagonal
Diameter
Dice
Digit
Dimension
Discount
Drawn to scale
East
Edge
Enlarge
Equal/Unequal
Equivalent
Estimate
Even number
Extend
Factor
Fraction
Frequency
Gradient (slope)
Losight
Lower/Reduce
Layer/Tier
Index
Interest (rate)
Intersection
Interval

Row
Salary (income)
Save
Scale
Solution
South
Space
Speed
Sphere
Square
Square number
Square Root
Substitute
Symmetry
Total
Triangle
Triangular number
Unknown
Unlikely
Velocity
Vertex
Vertical
Volume
Weight
West
Width

