\qquad
Homework 1 - Linear graph and solving equations

Question 1

(a) Copy and complete the table for the line
$y=3 x$

x	0	1	2	3
$y=3 x$				

(b) Complete the list of coordinates: $(0, \ldots)$ $(1, \ldots)(2, \ldots)(3, \ldots)$
(c) Plot the 4 points, join them up to show the line $y=3 x$.

Question 2

(a) Copy and complete the table for the line $y=3 x+1$

x	0	1	2	3
$y=3 x+1$				

(b) Complete the list of coordinates: $(0, \ldots)$ $(1, \ldots)(2, \ldots).(3, \ldots)$
(c) Plot the 4 points, join them up to show
 the line $y=3 x+1$.

Question 3

For each of the lines shown in the diagrams:
(a) Write down 3 points on the line.
(b) State the equation of the line.
(c) Determine the coordinates of the point of intersection.

Name \qquad
Homework 2 - Solving Equations and inequalities

Question 1

Find the value of x by solving these equations:
(a) $x+2=5$
(b) $x-7=15$

Question 2
Find the value of x by solving these equations:
(a) $2 x+3=23$
(b) $7 x-2=19$
(c) $3 x+3=13$
(d) $6 x-9=21$

Question 3
Solve these equations by multiplying out the brackets:
(a) $2(x+5)=12$
(b) $3(x-1)=9$
(c) $7(x+2)=21$
(d) $4(x-6)=0$

Question 4

Find the value of x by solving these equations:
(a) $3 x+1=2 x+5$
(b) $4 x-1=3 x+7$

Question 5

Find the value of x by solving these inequalities:
(a) $7 x+2<16$
(b) $10 x-3>27$
\qquad
Homework 3 - Changing the subject and Pythagoras' theorem

Question 1

Change the subject of these formulae to (x):
(a) $x+w=p$
(b) $2 a=r-x$
(c) $k x+f=e$
(d) $s=u x+q$
(e) $\frac{x+8}{5}=v$
(f) $\frac{2 x-m}{n}=g$

Question 2
Find, without a calculator:
a 4^{2}
b $\quad 3^{2}$
c 7^{2}
d $\quad 10^{2}$

Question 3

In this question, you should use the $\sqrt{ }$ button on your calculator to find :-
a $\sqrt{81}$
b $\sqrt{225}$
c $\sqrt{289}$
d $\sqrt{3600}$
e $\sqrt{1.96}$.

Question 4

The three sides of this right angled triangle are $16 \mathrm{~cm}, 30 \mathrm{~cm}$ and 34 cm .
a Write down the values of $16^{2}, 30^{2}$ and 34^{2}.
b Find the value of $16^{2}+30^{2}$.
c Check that $16^{2}+30^{2}=34^{2}$.

Question 5
Use Pythagoras' Rule to calculate the hypotenuse in each of these triangles :-

\qquad
Homework 4 - Pythagoras' theorem. Scale drawing.

Question 1

Calculate the length of each side, to two decimal places. (Watch the units).

b

c

Question 2

When this lighthouse is drawn to a scale of :-

$$
1 \mathrm{~cm}=2.5 \text { metres },
$$

its height is 18 cm .
Calculate the real height of the lighthouse.

Question 3

This door frame measures 150 centimetres by 90 centimetres.
Make a scale drawing of the door frame using a scale :-

1 cm represents 30 cm .

90 cm

Name \qquad
Homework 5 - Scale factor. Circle Properties.

Question 1

Drawings are made of some objects. Calculate the heights of the objects in the drawings, given their real heights and scale factors :-
a A flagpole 8 metres high.
b A house 450 centimetres high.
c A set of ladders 620 cm long.
(scale factor $\frac{1}{100}$) (i.e. $800 \mathrm{~cm} \div 100$)
(scale factor $\frac{1}{50}$)
(scale factor $\frac{1}{200}$)

Question 2

Find the values of missing angles.
(a)

(c)

(d)

(e)

Name \qquad
Homework 6 - Trigonometry

Question 1

Use a scientific calculator to find the following tangents, sine and cosine. Round your answer to 3 decimal places.
(a) $\sin 81^{\circ}$
(b) $\sin 36.7^{\circ}$
(c) $\cos 60^{\circ}$
(d) $\cos 46^{\circ}$
(e) $\tan 64^{\circ}$
(f) $\tan 10^{\circ}$.

Question 2

Sketch each of these triangles and use your calculator to calculate the sizes of the angles (marked a, b, c and d) :-
a

$a \mathrm{~cm}$
b

c

d

8.3 m

Question 3

A garden lawn is in the shape of a right angled triangle.

Calculate the lengths of the 2 shorter sides.

\qquad
Homework 7 - Trigonometry \& Statistics

Question 1

This metal bracket is in the shape of a right angled triangle.

Calculate the size of the smallest angle of the triangular bracket.

Question 2

For each diagram, (i) sketch the triangle,
(ii) calculate x (show all working) :-
a

c

Question 3

This table shows the connection between the weights of a group of women and their dress sizes.

Weight (kg)	40	60	64	70	50	60	48	44	64	68	74	76	42	42	72
Dress size	6	12	14	18	10	14	8	10	16	16	16	20	6	8	16

a Neatly draw the set of axis showing weights from 40 kg to 80 kg and dress sizes from size 6 to size 20.
b Neatly plot the information about the 15 women in your graph.
c Draw the line of best fit, trying to have as many points above as there are below the line.
d From your line, estimate the size of dress worn by Millie who weighs 54 kilograms.

