

Baldragon Academy Mathematics Course Plan

Seniors (S4-S6) National 5 (1 Year)

Term 1a - June

16 Periods (based on 4 weeks at 4 periods per week)

Surds and Indices

Learning Intention To be able to -	Periods
Work with surds	6
 Simplification 	
 Rationalising denominators 	
Simplify an expression using the laws of indices	6
 Multiplication and division using positive and negative indices including fractions 	
$\bullet (ab)^m = a^m b^m$	
$\bullet \left(a^{m}\right)^{n} = a^{mn}$	
$\bullet a^{m/n} = \sqrt[n]{a^m}$	
 Calculations using scientific notation 	

Expansion of Brackets

Learning Intention To be able to -	Periods
Work with algebraic expressions involving expansion of brackets	2
This is revision from S3	
• $a(bx+c)+d(ex+f)$	
• $ax(bx+c)$	
• $(ax+b)(cx+d)$	
$\bullet (ax+b)(cx^2+dx+e)$	
where $a, b, c, d, e, f \in \mathbb{Z}$	

<u>Factorising</u>

Complete the square in a quadratic expression with unitary x^2	2
coefficient	
 Writing quadratics of the form x² + bx + c in the 	
form $(x+p)^2+q$	
where $b, c \in \mathbb{Z}$ and $p, q \in \mathbb{Q}$	

Term 1b

August - October

40 Periods (based on 8 weeks at 5 periods per week)

Fractions - Include this all topics below

Learning Intention. To be able to -	Periods
Working with fractions	
 Operations and combinations of operations on 	
fractions including mixed numbers (addition,	
subtraction, multiplication, division)	

Factorising

Learning Intention. To be able to -	Periods
Factorise an algebraic expression	5
Common factor	
 ♦ Difference of squares p²x² - a² 	
 Trinomials with unitary and non-unitary x² coefficient 	
 Combinations of the above 	

Complete Qu 1-5 of Expressions & Formulae assessment	4
--	---

Algebraic Fractions

Learning Intention. To be able to -	Periods
Reduce an algebraic fraction to its simplest form	2
• $\frac{a}{b}$ where a, b are of the form $(mx + p)^n$ or $(mx + p)(nx + q)$ and $b \neq 0$	
Apply the four operations to algebraic fractions	2
 a/b * c/d where a, b, c, d can be simple constants, variables or expressions; * can be add, subtract, multiply or divide; and b ≠ 0, d ≠ 0 	

Rounding

Learning I	ntention. To be able to -	Periods
Rounding		1
	 To a given number of significant figures 	

*** Rounding to a given number of significant figures to be incorporated in the following topics.

<u>Volume</u>

Learning Intention. To be able to -	Periods
Calculate the volume of a standard solid (include composite) Sphere, cone, pyramid 	3

<u>Circle</u>

Learning Intention. To be able to -	Periods
Use circle geometry	3
 Calculating the length of an arc 	
 Calculating the area of a sector 	

Straight Line

Learning Intention. To be able to -	Periods
Determine the gradient of a straight line, given two points	2
$\bullet m = \frac{y_2 - y_1}{x_2 - x_1}$	

Complete Qu 6-10 of Expressions & Formulae assessment	4
Work Experience	5

Straight Line

Learning Intention. To be able to -	Periods
Determine the equation of a straight line	4
♦ Use the formula y − b = m(x − a) or equivalent to	
find the equation of a straight line, given two points or one point and the gradient of the line	
 Use functional notation, f(x) 	
 Identify gradient and y-intercept from various forms of the equation of a straight line 	

<u>Algebra</u>

Learning Intention. To be able to -	Periods
Work with linear equations and inequations	4
 Where numerical coefficients are rational numbers, Q 	
 Where numerical solutions are rational numbers, Q 	

Term 2

October - December

40 Periods (based on 8 weeks at 5 periods per week)

<u>Algebra</u>

Learning Intention. To be able to -	Periods
Work with simultaneous equations	5
 Construct from text 	
 Graphical solution 	
 Algebraic solution 	
Change the subject of a formula	3
Linear formula	
 Formula involving a simple square or square root 	

Quadratics

Learning Intention. To be able to -	Periods
Recognise and determine the equation of a quadratic function	2
from its graph	
 Equations of the form y = kx² and 	
$y = k\left(x+p\right)^2 + q$	
where $k, p, q \in \mathbb{Z}$	
Sketch a quadratic function	4
◆ Equations of the form y = (ax − m)(bx − n)	
where $a, b, m, n \in \mathbb{Z}$	
• Equations of the form $y = k(x+p)^2 + q$	
where $k, p, q \in \mathbb{Z}$	
Identify features of a quadratic function Identify:	3
 the nature and coordinates of the turning point 	
 the equation of the axis of symmetry 	
of a quadratic of the form $y = k(x+p)^2 + q$	
where $k, p, q \in \mathbb{Z}$	

Solve a quadratic equation (include quadratic formula)	4
 Solving from factorised form 	
 Solving having factorised first 	
 Graphical treatment 	
Use the discriminant to determine the number of roots	2
 Know and use the discriminant 	
 Determine the number and describe the nature of roots using the language 'two real and distinct roots', 'one repeated real root', 'two equal real roots' and 'no real roots' 	

Complete Qu 1-12 of Relationships assessment	4

<u>Pythagoras</u>

Learning Intention. To be able to -	Periods
Apply Pythagoras' theorem	3
 Using Pythagoras' theorem in complex situations including converse and three dimensions 	

<u>Similarity</u>

Learning Intention. To be able to -	Periods
Use similarity	4
 Interrelationship of scale — length, area and volume 	

Properties of Shapes

Learning Intention. To be able to -	Periods
Apply the properties of shapes to determine an angle involving	6
at least two steps	
 Quadrilaterals/triangles/polygons/circles 	
 Relationship in a circle between the centre, chord and perpendicular bisector 	

Term 3

January – March

55 periods (based on 11 weeks at 5 periods a week)

Trigonometry

Learning Intention. To be able to -	Periods
Work with the graphs of trigonometric functions	6
 Basic graphs 	
 Amplitude 	
 Vertical translation 	
Multiple angle	
Phase angle	
Work with trigonometric relationships in degrees	6
 Sine, cosine and tangent of angles from 0° to 360° Period Related angles Solve basic equations Use the identities cos² x° + sin² x° = 1 and tan x° = sin x°/(cos x°) 	

Complete Qu 13-18 of Relationships assessment	4
complete Qu 13-10 of Relationships assessment	т

Using Trigonometry

Learning Intention. To be able to -	Periods
Calculate the area of a triangle using trigonometry	2
• Area = $\frac{1}{2}ab\sin C$	
Use the sine and cosine rules to find a side or angle in a trianale	4
 Sine rule for side and angle 	
 Cosine rule for side and angle 	
Use bearings with trigonometry	2

<u>Vectors</u>

Learning Intention. To be able to -	Periods
Work with two-dimensional vectors	2
 Adding or subtracting two-dimensional vectors using directed line segments 	
Work with three dimensional coordinates • Determining coordinates of a point from a diagram representing a three-dimensional object	2
Use vector components Adding or subtracting two- or three-dimensional vectors using components 	2
Calculate the magnitude of a vector Magnitude of a two- or three-dimensional vector	2

Complete Qu 1-7 of Applications assessment	4
--	---

<u>Percentages</u>

Learning Intention. To be able to -	Periods
Work with reverse percentages	2
 Use reverse percentages to calculate an original quantity 	
Work with appreciation/depreciation	3
 Appreciation including compound interest 	
 Depreciation 	

Fractions

Learning Intention. To be able to -	Periods
 Working with fractions Operations and combinations of operations on fractions including mixed numbers (addition, subtraction, multiplication, division) 	3

<u>Statistics</u>

Learning Intention. To be able to -	Periods
Compare data sets using statistics	3
Compare data sets using calculated/determined:	
 semi-interquartile range 	
 standard deviation 	
Form a linear model from a given set of data	2
 Determine the equation of a best-fitting straight line on a scattergraph and use it to estimate y given x 	

Complete Qu 8-12 of Applications assessment	4